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Abstract

Augmenting a Microprocessor with Reconfigurable Hardware

by

John Reid Hauser

Doctor of Philosophy in Computer Science

University of California, Berkeley

Professor John Wawrzynek, Chair

As VLSI technology continues to improve, configurable hardware devices such

as PLDs are progressively replacing many specialized digital integrated circuits. Field-

programmable gate arrays (FPGAs) are one class of such devices, characterized by their

ability to be reconfigured as often as desired. Lately, FPGAs have advanced to the stage

where they can host large computational circuits, giving rise to the study of reconfigurable

computing as a potential alternative to traditional microprocessors. Most previous recon-

figurable computers, however, have been ad hoc designs that are not fully compatible with

existing general-purpose computing paradigms.

This thesis examines the problem of combining reconfigurable hardware with a con-

ventional processor into a single-chip device that can serve as the core of a general-purpose

computer. The impact of memory cache stalls, of multitasking context switches, and of vir-

tual memory page faults on the design of the reconfigurable hardware is considered. A pos-

sible architecture for the device is defined in detail and its implementation in VLSI studied.

With basic development tools and a full-fledged simulator, several benchmarks are tested on

the proposed architecture and their performance compared favorably against an existing Sun

UltraSPARC. Some additional experiences with the architecture are also related, followed

by suggestions for future research.

Professor John Wawrzynek
Dissertation Committee Chair
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Chapter 1

Introduction

Throughout its history in the last fifty years, digital electronics technology has

improved exponentially over time, doubling in performance roughly every 18 months while

device sizes and costs have shrunk correspondingly. In line with this growth, the number of

transistors available for constructing a commodity microprocessor currently doubles every

two years or so. With such persistent evolution in computer components, computer archi-

tecture must be constantly reexamined and reinvented. Designs that were excellent only a

decade ago may be hopelessly simplistic today, while techniques that were once prohibitively

expensive have today become the norm. Intuition based on the current state of the art may

not be a good judge of what the future will bring.

In the last decade, out-of-order superscalar processors have developed as the stan-

dard for desktop microprocessors. It is widely believed, however, that we are fast reach-

ing the limits of this paradigm. As superscalar issue width grows, its overhead increases

quadratically, while at the same time, opportunities for exploiting more instruction-level

parallelism seem to grow ever scarcer. As we approach the day when a single chip holds

100 million transistors—literally enough to pack 30 vintage Intel Pentiums onto one die—it

seems doubtful that superscalar designs by themselves will make the most of the available

potential.

One alternative being considered for the future is based on the technology of field

programmable gate arrays (FPGAs). It should be obvious that every application would be

best served by custom circuitry targeted specifically for it; and, in fact, application-specific

integrated circuits (ASICs) are often made in response to special needs. But no one can

afford to turn out a custom chip for every application he wants to run; and even when
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they are feasible, state-of-the-art ASICs become more expensive every day. As technology

has improved, a market has grown up instead for versatile off-the-shelf parts that can be

programmed to emulate arbitrary digital circuits in place of ASICs. FPGAs are one class of

such devices, distinguished by their ability to be reprogrammed (reconfigured) any number

of times.

The versatility and reprogrammability of FPGAs comes at a price. Only a few

years ago, the algorithms that could be implemented in a single FPGA chip were fairly

small. In 1995, for example, the largest FPGAs could be programmed for circuits of about

15,000 logic gates at most. Since a fast 32-bit adder requires a couple hundred gates, the

capabilities of such devices were somewhat bounded.

More recently, though, FPGAs have reached a size where it is possibile to imple-

ment reasonable subpieces of an application in a single FPGA part. This has led to a new

concept for computing: if a processor were to include one or more FPGA-like devices, it

could in theory support a specialized application-specific circuit for each program, or even

for each stage of a program’s execution. The unlimited reconfigurability of an FPGA per-

mits a continuous sequence of custom circuits to be employed, each optimized for the task

of the moment. Because FPGAs scale better than superscalar techniques, such designs have

the potential to make better use of continuing advances in device electronics in the long

term.

The idea of reconfigurable computing has been a subject of research for a decade,

but most projects have investigated the potential of connecting one or more commercial

FPGAs to an existing microprocessor via a standard external bus such as the PCI bus. If

reconfigurable computing is really to become the computing paradigm of the future, the

main parts must be brought closer together. Only a few studies have considered integrating

a processor and FPGA into a single device, with the two tailored to cooperate closely with

each other; and so there remain important questions about how such a device might be built

and programmed, and how it would fit within an existing general-purpose computing frame-

work. Such questions must be addressed before the bigger issue of whether reconfigurable

computing is really a good model can be answered.

This thesis attempts to make progress on the question of whether reconfigurable

computing will be a viable option for future general-purpose computers. The succeeding

chapters contain the following:



3

• A look at the fundamentals of computing machines, followed by a summary of past

work on reconfigurable computing and an articulation of the purpose of this research

project.

• An exploration of numerous issues arising from the integration of reconfigurable hard-

ware into a processor.

• The presentation of a plausible architecture for a reconfigurable-enhanced processor,

and an examination of the feasibility of implementing it efficiently in VLSI.

• A summary of the development and simulation tools created for the proposed archi-

tecture, and then the quantitative results from a handful of benchmarks by which the

design was evaluated.

• Lastly, a brief retrospective of weaknesses in the proposed architecture and lessons

learned in the design.

The thesis closes with conclusions and some opinions about the direction of research in

reconfigurable computing.
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Chapter 2

Background and Motivation

This chapter first reviews the fundamentals of computation and considers why

reconfigurable computing might be important in the future. It then lays out the focus of

the research, and ends by summarizing related work.

2.1 The potential for reconfigurable computing

2.1.1 Computing devices

Any computation can be represented as a combination of abstract data-flow and

control-flow graphs, with the nodes in the graphs being primitive operations such as integer

addition or comparison. Figure 2.1 has an example of a data-flow graph for a short expres-

sion. The primary function of a computer is to evaluate such graphs mechanically so as to

accomplish some goal. Of course, real computer processors do not operate on such abstract

graphs directly; instead, programs are encoded as a collection of machine instructions which

can be executed one after another in a specific sequence. But this is just an artifact of the

design of the machine, intended originally to simplify the processor’s task (and perhaps

the programmer’s, too). Modern processors, in fact, re-expose instruction level parallelism

by dynamically decoding short sequences of machine instructions into their correspond-

ing data- and control-flow forms before executing them. Regardless of how a program is

physically encoded, data-flow and control-flow graphs represent the true computation being

performed.

To evaluate the computational primitives in the graphs (addition, multiplication,
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Figure 2.1: A data-flow graph for a simple expression.

etc.), processors include one or more functional units, each capable of performing a certain

class of functions. A simple processor may have a single all-purpose functional unit known

as an ALU (arithmetic and logic unit) that can only execute one operation at a time. More

sophisticated processors (superscalar, VLIW) attempt to utilize multiple functional units

of different kinds simultaneously to execute programs faster.

In concept, the functional units are all a computer needs to evaluate the operations

in a data-flow graph. In practice, a computer must also support the physical movement

of data among functional units, as well as to and from memory. Computers with multiple

functional units clearly have to move data between them, and this not always as trivial as it

might sound. But even for a simple processor with a single ALU, there is never more than

a small amount of data that can be stored very close to the ALU at one time. A practical

general-purpose computer must have a memory hierarchy, with the fastest and smallest

memory (usually the registers) closest to the functional units, and increasingly slower but

more capacious memory correspondingly farther away. Moving data between different levels

of memory, either explicitly or implicitly, is thus another indispensible computer operation.

Figure 2.2 shows a simple diagram of a superscalar or VLIW processor with many

functional units. For each clock cycle, an attempt is made to execute as many primitive

operations as possible on the available functional units. A forwarding crossbar carries

the output of all units back around to the functional unit inputs, so that the next set of

operations can be executed in the next clock cycle with minimum delay. A multi-ported
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Figure 2.2: The core of an aggressive superscalar or VLIW processor. The boxes labeled
FU are the functional units. The small rectangles are registers preceding the functional
units; there may be other such registers not shown.
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Figure 2.3: An application-specific pipeline for computing the graph in Figure 2.1.

register file forms the highest level of the memory hierarchy and can be used to store values

over multiple cycles. Although the ideal is to use every functional unit every clock cycle,

no processor can achieve this for all programs because of the data and control dependencies

inherent in practical algorithms. The flexibility of the functional units, forwarding crossbar,

and register file is what makes a standard processor programmable, capable of executing an

arbitrary application with decent performance, even applications not thought of when the

processor was built.

The antithesis of a programmable processor is an ASIC (application-specific in-

tegrated circuit). In an ASIC, functional units can be dedicated to individual program
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operations and wired together to match precisely the calculation being performed. Fig-

ure 2.3 shows, for example, how an application-specific pipeline might be layed out to

perform the calculation of the data-flow graph of Figure 2.1. The advantages an ASIC has

over a programmable processor are threefold:

• Considerably less overhead is needed to control the mapping of functional units to op-

erations and the routing of data values between them. On a programmable processor

this overhead is manifest both in time and in die area.

• With smaller specialized functional units and less overhead circuitry around each one,

more functional units can be fit into the same die area.

• Because the operation of each functional unit is known and planned out in advance,

functional unit idleness can be minimized. On a programmable processor, certain

kinds of functional units might never be used by a specific application.

Obviously, by their very definitions, a programmable device cannot be an ASIC

and vice versa. However, as we shall see, reconfigurable devices such as FPGAs share

characteristics of both processors and ASICs. On the one hand, FPGAs can implement

ASIC-style circuits, while on the other, they are infinitely reprogrammable and thus imma-

nently general-purpose. This leads to the question of whether reconfigurable hardware can

capture some of the advantages of ASICs within a general-purpose computing environment.

2.1.2 Utilizing growing hardware resources

In the past, FPGAs were too modest to compete with relatively efficient super-

scalar processors, but this relationship may be changing. Electronic devices continue to

grow smaller and faster every day. The benefits of faster transistors and wires are obvious;

that they are also smaller means we get more of them for the same cost. Market forces

provide a strong incentive to find a way to use these added resources to improve each new

processor generation.

Most of the real work of a processor is done in the functional units, so that is an

obvious place to focus. Additional transistors can be employed in the functional units in at

least three ways:

• Individual functional units can be made faster by reengineering them for speed at the

expense of die area. For example, a one-bit-at-a-time iterative multiplier could be
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replaced by a much larger and faster array multiplier. There are physical limits to

this approach, however. If the processor already has array multipliers, opportunities

for improving multiplication further will be less dramatic.

• New functional units can be added for functions that previously required a sequence

of other operations. This is exactly what happened, for example, when floating-point

functional units were originally added to processors, and the same is happening again

today with small-SIMD operations (MMX, VIS, etc.). By expanding the different

kinds of functional units, however, the likelihood is increased that some will be unused

by an application.

• More copies of existing kinds of functional units can be added. This is the easiest

route to contemplate, but the hardest to make actually productive. Aside from the

increased hardware complexity of having more functional units to juggle, new degrees

of parallelism must be found in the software, or the new units will sit perpetually idle.

Despite the difficulties, increased parallelism is the only viable path once opportunities

for the first two options have petered out. Modern superscalar and VLIW processors are

already committed to 6- to 8-way instruction issue, and more is being considered.

Software contains roughly three classes of parallelism that can be exploited:

• Thread parallelism is between independent threads of execution, each executing a

separate sequence of instructions. One example would be when a subroutine contains

two or more separate loops that have no dependencies between them, in which case

the loops could all be executed simultaneously.

• Inter-iteration parallelism exists when the iterations of a single loop are all mutually

independent of one another and thus can be executed in parallel. This is also known

as data parallelism or vector parallelism, being the kind of parallelism that vector

processors profit by. A classic matrix multiply or fast Fourier transform has inter-

iteration parallelism that grows with the sizes of the operand arrays.

• Instruction-level parallelism (ILP) exists among operations within a single thread of

control, such as within a single loop iteration. The short expression in the example of

Figure 2.1, for instance, has 3-way ILP between the three subtractions, allowing the

three operations to be executed at the same time.
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2.1.3 Limitations of superscalar and VLIW processors

In the 1990’s, desktop processors adopted superscalar techniques to exploit ILP.

By definition, a superscalar processor accepts a sequential instruction stream and discovers

parallelism among the instructions dynamically and automatically. The basic model of

Figure 2.2 is followed, with a forwarding crossbar and multi-ported register file. An extra-

large register file and automatic register renaming are also commonly used to overcome false

dependencies among the registers.

For all their popularity, superscalar machines are among the least efficient at ex-

ploiting parallelism. At 6-way issue, more effort is usually expended in testing instruction

dependencies and controlling instruction issue than actually executing operations. This is-

sue overhead grows quadratically with the number of functional units. Also under pressure

to grow quadratically are the forwarding crossbar and register file (the register file because

both its size in bits and number of ports must be increased). A 16-way superscalar processor

would thus require tremendous overhead just to keep all its units busy.

VLIW (very long instruction word) processors eliminate much of the instruction

issue overhead by relegating to the programmer or compiler the task of scheduling instruc-

tion execution to take maximum advantage of ILP. The work that a superscalar processor

does on the fly to find ILP and avoid false dependencies (by register renaming) is done

in advance before the program is run. Wide VLIW processors are also known to resist

quadratic growth of the register file and crossbar, typically segmenting them such that the

“crossbar” is not fully connected and not every register is accessible to every functional

unit. These limitations make the VLIW processor more difficult to schedule for but also

more efficient.

Nevertheless, the circuitry needed to issue new instructions to the functional units

and reroute the crossbar every clock cycle remains a potential source of inefficiency even for

VLIW processors. Furthermore, neither superscalar nor VLIW designs can take advantage

of thread parallelism. Since the greatest sources of parallelism in programs are often inter-

iteration and thread parallelism as opposed to simple ILP, this will eventually be exposed

as a serious shortcoming.
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retiming
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Figure 2.4: A model of a reconfigurable device analogous to Figure 2.2 for a traditional
processor. An important aspect not visible in the figure is the fact that a reconfigurable
device generally does not take a cycle-by-cycle instruction stream but instead is reconfigured
between spurts of execution.

2.1.4 Reconfigurable computing as a new model

Reconfigurable computing is one alternative to the superscalar and VLIW para-

digms. Figure 2.4 illustrates a reconfigurable device along the lines of the previous processor

diagram. The main distinction between a reconfigurable device and a standard processor is

in the instruction stream: in its purest form, a reconfigurable device has no cycle-by-cycle

instruction stream. Rather, the device is configured by loading a complete specification of

the function of each part of the device at once. Once configured, the intention is for the

device to run in that configuration for a decent interval before being reconfigured. Each

configuration mimics an ASIC-like circuit, like that of Figure 2.3, specialized for the par-

ticular task at hand. Changing configurations might take anywhere from a few clock cycles

to a few thousand cycles. In accordance with the simpler programming mechanism, the

dynamic forwarding crossbar is replaced by a less flexible configurable network for mak-

ing static connections among the functional units; and short queues of retiming registers

associated with each functional unit take the place of the traditional processor’s shared,

multi-ported register file.

The familiar 90-10 rule asserts that 90% of execution time is consumed by about

10% of a program’s code, that 10% generally being inner loops. Reconfigurable devices excel

in those cases where the computation represented by a configuration is repeated many times,

so that the time required to load a configuration can be amortized over a long execution

time and/or overlapped with other execution. When all of an application’s important loop

bodies can be configured to fit within the reconfigurable machine (one at a time), there

would seem to be no need for the overhead of a fully dynamic instruction fetch and issue
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master
processor

slave
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Figure 2.5: A more practical hybrid machine, combining a traditional processor with a
reconfigurable device.

mechanism, allowing the machine to be leaner and more efficient.

By reducing the hardware to just the essentials needed to support computation,

the reconfigurable design scales better to larger sizes than the more complex superscalar

and VLIW styles. Although a naive expansion of the configurable network would cause it

to grow quadratically with the number of functional units, it actually only needs to grow

enough to support the connectivity required by real applications. Furthermore, unlike a

superscalar or VLIW machine, reconfigurable hardware can easily exploit not only simple

ILP but also inter-iteration and thread parallelism, making reconfigurable computing well-

poised to work with very large numbers of functional units.

2.1.5 The hybrid machine

The corollary of the 90-10 rule is that 90% of a program’s code accounts for only

10% of its execution time. In practice, reconfigurable devices get bogged down on the large

parts of programs that are never executed with enough repetition to justify the time it

takes to load a configuration for them. A practical compromise, therefore, is to couple a

reconfigurable device with a traditional-style processor as in Figure 2.5, in order to exploit

the strengths of each. With this organization, the reconfigurable hardware is used to execute

the innermost loops (or kernels) of an application, while the modest traditional processor

handles the mass of code between kernels.

In such a hybrid architecture, it makes sense to have the reconfigurable part be

subservient to the traditional processor for at least two reasons: (1) the traditional processor

executes the control code which logically ties together the various kernels the reconfigurable

device will perform, and (2) execution on the traditional processor then becomes the default

condition, allowing the new machine to fit in more easily with existing computing practice.

The master processor can even be made instruction-set-compatible with an existing proces-

sor architecture to leverage existing development tools and operating systems.
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configurable
network

logic
blocks

Figure 2.6: The reconfigurable structure
from Figure 2.4 as it appears in a commer-
cial FPGA.

4-input
table lookup

R

Figure 2.7: A canonical logic block func-
tion. Four single-bit inputs are taken from
the configurable network and used to index
into a 16-entry table of possible outputs.
The box labeled R is a one-bit register in
which the output can be optionally latched
before being sent back over the configurable
network to other logic blocks.

2.2 FPGAs

The most common reconfigurable devices today are FPGAs; these are indepen-

dently packaged parts marketed both as prototyping platforms and as reconfigurable alter-

natives to ASICs. In a commercial FPGA, the basic structure from Figure 2.4 is reshaped

into two dimensions to look more like Figure 2.6, with the functional units of the earlier

diagram broken into a larger number of logic blocks that are individually rather small. The

canonical logic block is often considered to be a lookup table that takes four bits of input

and generates one bit of output, as shown in Figure 2.7. By filling in the table with the

right bits, any four-input logic function can be realized. Various studies have suggested

that four inputs is a good size for these lookup tables, trading off utility (how powerful the

blocks are) against utilization (what fraction of their power ends up idle) [65, 66].

Logic blocks in actual FPGAs tend to be more complex than a single lookup table;

Figure 2.8 has a similar diagram for a Xilinx 4000-series logic block, which has two four-

input lookup tables and an extra three-input table, for a total of eleven bits of input and

four bits of output [71, 81]. Dedicated carry chain circuitry at the top of the figure makes

it easy to gang together a line of logic blocks to form a relatively fast multi-bit adder. This

diagram in fact ignores many additional details, such as the way Xilinx’s two 16-bit lookup

tables can be used together as 32 bits of random access memory, or the options available
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Figure 2.8: Simplified view of a Xilinx 4000-series logic block. The block has eleven input
bits and four output bits, plus special carry chain hardware for basic arithmetic operations.

number of 4-input bytes of on-chip
lookup tables data RAM

3.3 V XC4036XLA 6,156 0
XC4052XLA 9,196 0
XC4085XLA 14,896 0

2.5 V XC40150XV 24,624 0
XC40250XV 40,204 0

2.5 V XCV300 6,144 8,192
XCV600 13,824 12,288
XCV1000 24,576 16,384

1.8 V XCV812E 18,816 143,360
XCV1000E 24,576 49,152
XCV2000E 38,400 81,920
XCV3200E 64,896 106,496

Table 2.1: A sampling of FPGA chips available from Xilinx in 2000. All the devices have
additional capabilities beyond just the lookup tables and data memory listed.
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for controlling the clocking of the two single-bit registers.

Even a complex Xilinx logic block is quite small compared to the usual functional

units of a computer. But in large numbers, small logic blocks can add up to considerable

compute power. Table 2.1 lists some of the current offering of FPGAs from Xilinx, currently

the most popular vendor (xilinx.com). The new XCV3200E, for example, has enough

hardware to implement over two thousand 32-bit adders. Depending on how the device is

configured, that equates to hundreds of 32-bit variable shifters or dozens of fully pipelined

32-bit multipliers. The die sizes of the largest parts are generally at the boundary of what

can be manufactured, but this of course is not true of the smaller parts, and the future is

expected to bring only greater densities.

2.3 Previous FPGA-based systems and their applications

In the past decade, many projects have been reported that use FPGAs to obtain

speedups over traditional computers for particular applications. The literature includes

quite a few examples where a collection of off-the-shelf FPGAs have been connected together

to achieve performances hundreds to thousands of times faster than a workstation-type

computer working on the same problem. Early work with Splash 2, for example, found that

the FPGA-based machine could calculate genome (DNA) edit distances 2500 times faster

than a contemporary SPARC 10, and could perform a median filter of a grey-scale image

almost 140 times faster than the SPARC 10 [1, 9]. Such numbers have stirred interest in

reconfigurable computing even as a general-purpose reconfigurable architecture has always

seemed at least a few years out of reach.

It must be pointed out, however, that one Splash 2 board contains 17 FPGA parts,

whereas a SPARC 10 is built around a microprocessor on a single chip. A fairer comparison

would normalize performance to the number of compute chips, since a special board with

17 SPARC processors might also compute faster than a single SPARC 10 alone. When the

speedups above are divided by the number of active FPGAs used, the per-chip speedup

factors work out to be 147 for the genome edit distance and just under 10 for the grey-scale

median filter. These numbers are obviously still interesting but put FPGA speedups into

better perspective.

Some recent examples of FPGA applications are listed in Table 2.2. In general,

the best speedups tend to be in the range of 10 to 30 times per chip, with only a few
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reconfigurable compared speedup
application machine against per chip year reference

military target
recognition

Splash-2 board,
16 Xilinx 4010’s

110 MHz
HP 770

7.5 1997 [64]

finding Golomb
rulers

board with
20 Xilinx 5215’s

167 MHz
UltraSPARC

1.35 1998 [17]

10,000-bit multiply,
divide, square root

1 Xilinx 4044XL UltraSPARC 2–14 1998 [70]

frequency-domain
sonar beamforming

1 Xilinx 4062XL 40 MHz ADI
SHARC

8 1998 [24]

computing
Goldbach partitions

1 Xilinx 40125 195 MHz
MIPS R10000

>13 (1) 1998 [47]

rendering Bézier
curves

PCI card with
1 Xilinx 6216

desktop PC 48 (2) 1998 [53]

genome matching,
generalized profiles

VME card with
8 Xilinx 4013’s

SPARC 20 7.9 1999 [59]

infrared military
target recognition

PCI card with
16 Xilinx 4020’s

180 MHz
Pentium

1.24 1999 [40]

Notes: (1) Estimated based on experience with a PeRLe-1 board with 16 Xilinx
3090s.

(2) The FPGA operated on curves 14 times longer and thus with less
overhead per rendered pixel.

Table 2.2: Some recent applications utilizing off-the-shelf FPGAs. Only FPGA chips actu-
ally performing computation have been counted in the speedup numbers.
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exceptional applications doing even better. If the arguments of earlier sections are right,

some of these numbers should improve as the technology advances. Memory and other

support chips have not been counted in the comparisons, partly because they are not the

subject of interest, but also partly because it is rare that enough information is provided

to make it even possible. It will have to be assumed that the memory system is not the

bottleneck in any of the examples.

Current research is indebted to early projects done at DEC’s Paris Research Lab-

oratory and at the Supercomputing Research Center in Maryland. The DECPeRLe-1

board—the third generation of DEC’s Programmable Active Memories (PAM) project [74]—

contained 24 Xilinx 3090 chips and connected to a host DEC workstation over the TUR-

BOchannel bus [6]. Similarly, the Supercomputing Research Center’s Splash 2 board sported

17 Xilinx 4010’s and plugged into a SPARCstation SBus [1, 9]. Up to 16 of the Splash boards

could be attached to a single SPARCstation (though apparently no one ever actually used

that many). In the first half of the 1990s, these experimental boards were used to accelerate

a collection of applications, including genome (DNA) pattern matching [9, 48], determin-

ing stereo vision from paired images [6], human fingerprint minutia matching [9], solving

three-dimensional heat equations [6], and Hough transforms and Gaussian/Laplacian pyra-

mid generation for images [1]. The PeRLe-1 board even assisted with particle detection at

CERN’s Large Hadron Collider [6]. The new reconfigurable machines could often solve large

problems hundreds of times faster than the workstations of the time. However, they also

needed dozens of FPGA chips to do so. A full-size board with over a dozen large processing

chips will never be a competitive replacement for a single-chip microprocessor.

The FPGA parts available back then were too small to allow interesting problems

to fit into just one chip. This situation has improved over time, so that beginning in the

later 1990s various companies have marketed plug-in boards with only a few off-the-shelf

FPGAs, sometimes as few as one. These boards typically plug into a computer expansion

slot such as the PCI bus and can be used as generic accelerator cards for specially pro-

grammed applications. The most visible current vendors include Nallatech Limited (www.

nallatech.com), Alpha Data Parallel Systems (www.alphadata.co.uk), Annapolis Micro

Systems (annapmicro.com), and Virtual Computer Corporation (vcc.com).

Although these boards are useful, people have regularly complained about two

shortcomings: (1) the slow reconfiguration times of the FPGAs, and (2) the overhead of

shipping data back and forth over the connecting bus [2, 20, 39, 46, 52, 53, 69]. The
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generally slow configuration time of commercial FPGAs is a reflection of their intended

market. A Xilinx XCV1000E, for instance, though not one of the largest parts, still takes

12.5 ms to load a complete configuration. An older, slower XC4036XLA, with one-fourth

the logic blocks, needs 10.5 ms to load a configuration. When an FPGA is being used

as a flexible alternative to an ASIC, it might be configured only once when a system is

booted, in which case configuration times of a dozen milliseconds are inconsequential. When

acting as a computational accelerator for a 300 MHz processor, on the other hand, the

same configuration overhead means each kernel the FPGA works on must execute for at

least 15 million clock cycles to have any chance of achieving a speedup factor as much

as 5. Reconfigurable hardware with less configuration overhead would have far greater

applicability.

As for the overhead of moving data back and forth, Singh and Slous found for

example that a Xilinx 6200 FPGA on a Virtual Computer Corporation board could perform

a 3× 3 FIR filter on an image 80 times faster than the PCI bus could transmit the original

and filtered images onto and off the board [69]. While memory bottlenecks can be a problem

no matter where a computation is performed, it is a safe bet that the main processor in a

computer has more bandwidth to its DRAM than to devices on the other side of a PCI bus.

If the reconfigurable hardware is going to execute program kernels faster than the main

processor, it deserves to have equal or better bandwidth to the memory than the processor

itself.

2.4 Focus of the research

To recap, a few truths can be stated:

• Reconfigurable devices may do well with small, highly repetitious kernels in applica-

tions, but standard processors are still superior for the remaining code that is irregular

and/or rarely repeated.

• For reconfigurable computing to be economically viable for more than a small fraction

of the market, the number of parts involved has to be squeezed down to at most one

chip, and preferably less. Existing microprocessors are implemented in a single chip,

and the pressure in the market is always for fewer parts, not more.

• Reconfigurable hardware will not meet its full potential unless reconfiguration time is
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minimized and the reconfigurable hardware also has access to the computer’s memory

that is at least as good as that available to the main processor.

To better integrate a reconfigurable device into a computer, various researchers have called

for combining a traditional microprocessor with an FPGA-like device onto one die to form

a new kind of processor [4, 16, 29]. Although it used to be that it took more than one

FPGA chip to do anything interesting, we have reached the stage where a very powerful

reconfigurable device can be fit into only a partial die. As superscalar and VLIW designs

fail to capitalize on increasing transistor counts, the one-chip hybrid machine provides a way

to employ greater VLSI densities for something more than just larger caches. It remains

uncertain, though, just how effective such a machine would be in practice as a general-

purpose platform.

That is not to say it was ever hard to predict that a processor and an FPGA

could share the same die in a commercial product. In the last year or so, Triscend (www.

triscend.com), Chameleon Systems (www.cmln.com), and Altera (www.altera.com) have

each announced or begun shipping such parts. But these products are intended for the

embedded market, where an ad-hoc coupling between the FPGA, processor, and memory

can be tolerated. The more challenging question is whether a hybrid architecture could be

successful in a general-purpose market, such as that of desktop PCs now dominated by Intel

processors. By definition, a general-purpose computer must be prepared to run software

written by arbitrary third-party sources, for purposes unknown at the time the computer

is created. Special features of general-purpose environments include:

• Preemptive multitasking: Multiple processes or threads of execution can be active at

the same time, and a running process may be suspended at any time to give another

process a chance to run for a while.

• Virtual memory: Memory accesses are translated between virtual and physical ad-

dresses; and moreover, at any given time some allocated virtual memory may reside

not in physical RAM but instead on a much slower device such as a hard disk. A mem-

ory access may necessitate the suspension of the running process until the requested

memory page can be retrieved from the hard disk.

• Interprocess protection: To better isolate faults and to ensure security between users,

processes are prevented from performing actions that could interfere with each other.
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• Binary compatibility: More-or-less the same user-level executable code should run on

any one of a family of architecture implementations. Binary compatibility protects

customers’ investments in software when they upgrade to better machines.

Before the advantage of using reconfigurable hardware in a general-purpose proces-

sor can be measured, one first has to have an idea what the machine will look like. It is not

enough just to know that the two parts are on the same die, since performance will surely

be affected by the way the pieces are interconnected. Better access to memory was, after all,

part of the point of moving the reconfigurable hardware onto the same die in the first place.

And the issues listed above must be addressed. Making an FPGA amenable to preemptive

multitasking, for instance, could have performance implications that the embedded market

has not had to face.

This dissertation project has attempted to shed some light on the value of augment-

ing a traditional general-purpose processor with reconfigurable hardware, by first defining a

prospective architecture and then assessing its performance on a sampling of applications.

To this end, a number of design issues are presented in the next chapter relating to the per-

formance of the reconfigurable part and its adaption to the general-purpose environment.

An effort has also been made to verify that the proposed architecture can reasonably be

implemented in VLSI. Finally, by running programs on a simulator, the new architecture

has been compared against an ordinary superscalar processor to see what speedups might

be achieved for typical applications.

To evaluate any new processor design, one would like to benchmark it rigorously

against existing processors for a broad sampling of workloads. However, since there is

not yet any commonly accepted framework for integrating reconfigurable hardware into

a processor, this project has had to do a little bit of everything necessary to design a

reasonable architecture and evaluate its performance. Considering that current processor

design has benefited from decades of refinement by hundreds of researchers, it would be

ambitious to expect this one project to generate absolutely definitive conclusions about the

efficacy of reconfigurable computing. The goal instead has been to find trends and narrow

the focus for further research.
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2.5 Related work

Researchers have been discussing marrying reconfigurable hardware to a traditional

processor for several years, and a number of prototypes and partial experiments have been

tried with varying degrees of success.

2.5.1 Concept prototypes

Probably the earliest prototypes were Virginia Polytechnic Institute’s PRISM ma-

chines [2, 4, 76]. The first, PRISM-I, consisted of a board with four Xilinx 3090’s plugged

into a host system based around a Motorola 68010. Although PRISM-I’s reconfigurable

hardware was essentially a multi-FPGA board like those discussed in Section 2.3, the focus

with PRISM was on making the board a fully transparent extension of the host processor.

(The name PRISM is an acronym for Processor Reconfiguration through Instruction-Set

Metamorphosis.) A C compiler was created that, with some minimal assistance from the

programmer, automatically picked out candidate subroutines and compiled them for the

reconfigurable hardware instead of the processor. Compiled programs ran partly on the

host processor and partly on the attached FPGA board.

The second prototype, PRISM-II, brought the host processor and FPGAs closer

together, attaching an AMD Am29050 directly to three Xilinx 4010’s in an irregular network.

For both machines, the sizes of the FPGAs at the time limited the example kernels to very

small functions such as Hamming distance, bit reversal, and finding the first 1 bit in a 32-bit

word. For just these small kernels, speedups over the host processor ranged in factors from

7 to 86, or from about 2 to 25 per FPGA chip. Although encouraging, the small kernels

could not be said to be representative of many real applications.

Another very similar project was conducted at the École Polytechnique Fédérale

in Switzerland [37]. The Spyder machine extended a custom processor with three Xilinx

4010’s acting as reconfigurable execution units. With Spyder, the programmer was respon-

sible for dividing a program between the main processor and the reconfigurable units and

programming each in a special subset of C++.

At Brigham Young University, the prototyping of a hybrid machine was taken one

step further with the Dynamic Instruction Set Computer (DISC) [78, 79]. In both the orig-

inal DISC and DISC-II, the entire combined processor—main processor and reconfigurable

component together—were constructed within FPGA parts. The first DISC was made with
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two National Semiconductor CLAy31’s. A primitive main processor was squeezed into part

of one CLAy31, with the majority of the same chip supplying the prototype reconfigurable

component. The second CLAy31 FPGA served only to control the loading of configura-

tions on the first one. With DISC-II, the main processor was moved onto a separate, third

CLAy31 and made more powerful. Lacking a special compiler, DISC kernels had to be

separated out by hand and programmed using the usual FPGA tools. DISC was an ad-

vance primarily in the handling of configuration loading. The reconfigurable component

was treated as a small cache, with a “miss” in the cache resulting in an automatic stall

while the needed configuration was loaded.

2.5.2 Reconfigurable functional units in a processor

After the early prototypes, a few researchers have looked at the possibility of

integrating the reconfigurable hardware so closely that it is just another functional unit

within the pipeline of the processor. Such projects include the PRISC design of Razdan

at Harvard University [63], Chimaera at Northwestern University [29, 83], and ConCISe

at Philips Research Laboratories [41]. In these designs, the reconfigurable hardware has

no separate data state of its own; instead, like other functional units in a processor, data

inputs are obtained from the register file and results stored back there. Without any internal

registers, the reconfigurable functional units support only combinatorial circuits (no loops

in the circuit).

For all three systems, a C compiler has been extended to find common sequences

of instructions to implement on the reconfigurable units. Like DISC, the systems all load

configurations in a cache-like manner. A program requests the configuration it wants, and

if it is not already ready, execution stalls automatically while the requested configuration

is loaded.

Unfortunately, the speedups demonstrated by these systems have been less than

impressive, rarely more than a factor of 2. Fundamentally, this technique is limited by its

ability to exploit parallelism, as will be explored later in Section 3.1.1.

2.5.3 Streaming reconfigurable hardware

In a different tack, other research has dedicated the reconfigurable hardware pri-

marily for streaming applications. Streams present data in a sequential order, and stream



22

processing is generally done on a first-in-first-out basis. Examples of streaming applications

include audio and video filtering, compression, decompression, encryption, and decryption.

Streaming hardware can also be used on problems that can be decomposed into vector op-

erations on unit-stride vectors (contiguous in memory), since such vectors can be treated

as streams.

One stream-oriented architecture is the University of Washington’s RaPiD [15, 18,

19]. The RaPiD reconfigurable unit is composed primarily of 16-bit functional units and

registers connected by a configurable network, much in the original image of Figure 2.4.

Although this part of the reconfigurable unit is not stream-specific, input and output to the

reconfigurable unit is required to be in the form of streams to and from memory only. At

least three streams are supported. There is no data connection specified between the main

processor and the reconfigurable unit except through memory.

OneChip-98 is another stream-oriented architecture [38]. (The original OneChip

had a different organization that was never fully fleshed out [80].) Only a single input stream

and a single output stream are supported, and there are other restrictions on stream length

and alignment that make the OneChip-98 design less than compelling.

Many streaming applications can be decomposed into an assembly-line sequence

of smaller operations that also act on streams. This characteristic opens the door to a way

of virtualizing the reconfigurable hardware, whereby a streaming application can be run on

a range of reconfigurable units of varying sizes, with execution speed proportional to the

amount of reconfigurable hardware available. Keeping the assembly-line analogy, it is easy

to understand how an assembly line with fifty workers ought to be able to turn out the

same product as one with a hundred; the team of fifty would simply take twice as long to

generate the same quantity of output.

The most interesting work along these lines has been Carnegie Mellon University’s

PipeRench reconfigurable unit [10, 22, 23, 46, 58]. A compiler for PipeRench breaks up a

streaming application into as long a sequence of component stream operations as it can, and

this is then how the configuration is represented within a program. When it comes time to

run the program, if a particular PipeRench implementation is not large enough to contain

the entire sequence at once, individual pieces of the reconfigurable hardware are regularly

recycled to do all the different parts of the long sequence automatically. The design of

the PipeRench hardware, however, does not permit it to work on problems that cannot be

adequately represented in terms of streams in this way.
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2.5.4 Novel reconfigurable hardware for computation

The design of commercial FPGAs is generally acknowledged to have a historic

bias toward “random” control logic—often called “glue logic”—rather than toward the

core arithmetic operations such as addition and multiplication found in much computation.

When reconfigurable hardware is adopted into a general-purpose processor, it becomes

appropriate to consider alternative designs. Some of the projects already mentioned have

invented new reconfigurable hardware for their processors. Other studies have focused

exclusively on the reconfigurable array without specifying exactly how it is connected to

memory or the main processor.

One direction taken has been to re-optimize an FPGA’s logic blocks for bit-

serial arithmetic. This approach is represented by NEC’s experimental Sea Of Processors

(SOP) [82], and by a reconfigurable array developed at the Tokyo Institute of Technol-

ogy [60].

A more common notion is to replace the lookup-table-based logic blocks of an

FPGA with larger ALUs capable of 4-bit, 8-bit, or larger operations. The CHESS reconfig-

urable array described by Marshall et al. has 4-bit logic blocks [54], whereas 8-bit functions

have been favored for PipeRench [22, 23] and for the MATRIX array designed at the Mas-

sachussetts Institute of Technology [56]. The reconfigurable hardware of RaPiD is divided

into two parallel tracts, one with 16-bit functional units for data and a separate control

tract with FPGA-style lookup tables [15, 18, 19].

Many other ideas and structures have been proposed, too many to list here. As one

example, Haynes and Cheung describe a novel array with 4-bit blocks that can be combined

directly to form multiply-accumulate operators [35]. It should also be noted that RaPiD,

CHESS, and MATRIX break with reconfigurable tradition by allowing their functional units

to receive instructions as well as data over the configurable network. Certainly there is no

consensus yet as to the best structure for a reconfigurable accelerator, other than a shared

theme that existing FPGA hardware may not be the best choice for doing the type of

computation associated with application software.
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Chapter 3

Design Issues

General-purpose computers have distinctive features and limitations, including

support for multitasking, virtual memory, and structured programming. Multitasking im-

plies the ability to perform context switches. Virtual memory requires that memory ad-

dresses be translated, and memory accesses can cause page faults that must be serviced

transparently by the system. Structured programming assumes that functional implemen-

tation can be hidden from the clients of functions, even to the extent of separate compilation

of function and client. Each of these aspects must be considered in designing reconfigurable

hardware for augmenting a general-purpose processor.

This chapter covers the gamut of issues, starting first with high-level processor-

reconfigurable integration, and then later moving to low-level details of the reconfigurable

unit itself.

3.1 Integrating reconfigurable hardware into a computer

By bringing the reconfigurable hardware closer to the processor, the two can be

made to interact more tightly. The main advantage is the proximity of the reconfigurable

array to the processor’s memory system, eliminating the need to copy data back and forth

laboriously over an external I/O bus. The closer connection to memory and the improved

coordination with the processor should permit the reconfigurable array to be employed for

a larger number of smaller tasks. To achieve the greatest cooperation, many options for the

specifics of the coupling need to be explored.
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Figure 3.1: (a) Reconfigurable array as another functional unit in the main processor
pipeline, using the existing register file. (b) Separating out the reconfigurable unit from
the processor pipeline by a coprocessor-style register-transfer interface. Internal array state
permits execution to proceed within the array independently of the main pipeline.

3.1.1 Level of integration

Given the freedom to integrate reconfigurable hardware with the processor, some

designers have gone all the way and added a reconfigurable array as another functional

unit in the processor pipeline. As noted in Section 2.5.2, examples in the literature include

PRISC [63], Chimaera [29, 83], and ConCISe [41]. With such a design, array inputs are

naturally taken from processor registers and results written back to the register file, just

as for other pipeline functional units (Figure 3.1(a)). By adding one or more processor

instructions of the form rd = reconfigop(ra,rb), the reconfigurable array can provide

unique, tailor-made operations for each program. But this seemingly straightforward ap-

proach harbors some pitfalls.

First we face the question of whether the array can hold internal data state, or

whether it must be stateless like other functional units and dependent on the main register

file for storing data. If the array contains no internal data registers, it will not be able to

execute independently for an extended length of time, because there is only so much useful

combinatorial calculation that can be done on a few words read from the register file to

generate at most a couple words to write back. The consequence can be seen in the speedups
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reported for the previous examples. Razdan’s PRISC achieves speedups averaging only

about 12% on most of the SPECint92 benchmarks, the lone exception being the eqntott

benchmark which saw a speedup of almost a factor of 2 [63]. Chimaera speedups have also

been less than a factor of 2 with a few exceptions, mostly benifiting from short 32-bit SIMD

techniques [29, 83]. And ConCISe speedups for DES encryption and the A5 stream cipher

have been 44% and 40% respectively [41]. In contrast, based on experience with PRISM-II,

Agarwal et al. argued that the reconfigurable unit must be able to execute for more than a

few cycles to maximize its advantage [2].

The parallelism that can be achieved when the reconfigurable unit has no data state

is strictly bottlenecked by the number of read and write ports in the register file, preventing

the array from realizing tremendous speedups over a traditional processor (Figure 3.1(a)).

The situation can be improved with the addition of many more ports into the register file;

however, the better, more direct solution is to allow the array to contain internal state,

analogous to but separate from the traditional register file. This state should presumably

be spread throughout the array, so that the array can keep a large number of operations

running simultaneously for an extended period of time, which is the only way impressive

speedups will be obtained. One complication is that it will be necessary to suspend array

execution midway if a context switch occurs while the array is computing. This trouble is

essentially unavoidable, and is addressed later in Section 3.1.7.

Given that a computation on the array can take indefinite time, instructions of

the form rd = reconfigop(ra,rb) cause a problem for the processor pipeline. Assume

for the moment that the results of such instructions are interlocked, so that if a following

instruction takes as input a register written by a reconfigurable array instruction, the later

instruction will stall until array execution has completed. Otherwise, in the absence of

an interlock stall, subsequent processor instructions continue to execute in parallel with

the reconfigurable array in the usual manner of a processor pipeline. Difficulties arise if a

context switch occurs while an array instruction is in progress:

• Precise interrupts are impractical, even with a mechanism for backing up processor

state such as a reorder buffer, because it would be necessary to restore the state to

a point before the reconfigop instruction began. In addition to backing out of the

array’s work, the effects of all instructions completed while the array was executing

would have to be undone. Even if we wanted to take the risk of discarding potentially
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thousands of cycles of forward progress, the state that would need to be saved is

prohibitive. (The saved state would necessarily cover all memory accesses during that

time.)

• Ordinarily, the context switch software will save the registers with a simple sequence

of register store instructions. If a register value is pending from an ongoing array

computation, the store of that register will interlock, blocking the context switch

indefinitely.

• The information about which if any registers are pending from an array instruction

must be saved as part of the context switch state and restored when the context is

resumed if register interlocks are to work properly when the process is resumed.

As the designers admit, it is partly in recognition of these difficulties that the reconfigurable

units in PRISC and ConCISe are limited to a few clock cycles of execution [41, 63]. But

throttling the power of the reconfigurable hardware is not the answer.

Some of these concerns would be moot if there was no interlock on the result of

reconfigurable array instructions. But this option causes more problems than it solves.

Without an automatic interlock, instructions must be statically scheduled by the compiler

(or a human programmer). Static instruction scheduling over the hundreds or thousands

of clock cycles the array might execute would surely be tricky to get right. But even worse

is the fact that, to make static scheduling even possible, the exact instructions the proces-

sor will execute each cycle must be strictly determinable from the architecture definition,

which means it cannot be improved by later implementations. If the architecture specifies

that integer multiplication takes 16 clock cycles, that number cannot be reduced without

rescheduling all software for the new implementation; otherwise, instruction execution might

get out of sync with the execution of a function on the reconfigurable array.

It is possible to have full interlocking and still find a way to do context switches

with a functional unit that takes indefinite time to complete. But it is easier simply to

discard the rd = reconfigop(ra,rb) style of instruction which causes the trouble in the

first place. A long-executing functional unit has no need to be in the processor pipeline;

it can be separated out as a “coprocessor,” with distinct instructions used to transfer data

between it and the main register file (Figure 3.1(b)). The previous instruction form is

then split into multiple ones that: (1) move argument data to the coprocessor, (2) start
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coprocessor execution, and (3) move the result back. The overhead of executing the extra

instructions to transfer data in and out will be small if the reconfigurable hardware actually

executes for more than a few cycles at a time.

To avoid static scheduling, the instruction to copy data back from the coprocessor

must be interlocked on the completion of the computation there. But this interlock is not

problematic because it is explicitly tied to the completion of the array computation, whereas

in the earlier case the connection was implicit through the use of a register. Section 3.1.7

covers what is required for context switches in the coprocessor model.

3.1.2 Programming paradigm

To reap the greatest speedups, a reconfigurable functional unit must execute for

more than a few clock cycles at a stretch; yet the amount of static program code that can

be implemented in the reconfigurable array at one time is usually rather small. Hence, of

all the code in a program, the best candidates for implementing on the array are inner loops

with small static code size but potentially large dynamic instruction counts. If enough loops

can be transferred to the array that together account for a majority of program execution

time, a signficant speedup can be achieved for an entire program.

The simplest programming model assumes that when program execution reaches

an inner loop, the appropriate configuration is loaded onto the array, input data is copied

to the array, and array execution is started. When the loop is done, results can be copied

out and instruction execution resumed on the main processor, at least until the next loop.

Because most interesting loops repeatedly access memory (through pointers or arrays), some

means must also be provided for getting memory data in and out during loop execution;

this will be discussed in Section 3.1.6.

In an experiment by Jantsch et al., eight real programs were found to contain

2523 inner loops that were potential candidates for acceleration [39]. However, most such

candidates do not execute for very long, risking that the time to load a configuration for

them will exceed the time saved from using the reconfigurable hardware.

To hide the time it takes to load configurations, it is often proposed that a re-

configurable unit be able to preload the next configuration needed while the current one

is in use [28, 38]. One obstacle to doing this on a general-purpose computer is the way in

which structured programming decomposes programs into independent subroutines whose
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implementations are supposed to be hidden from one another and may in fact be separately

compiled. Without reworking this paradigm, it will often not be known that a configuration

needs to be loaded until the subroutine that needs it has been called, and by then it may

be too late to overlap the load with much other computation. Section 3.1.6 explains why

there also may not be excess bandwidth to memory for preloading a configuration while the

array is executing.

Instead of preloading, other techniques can be used to combat configuration load-

ing overheads: (1) configurations can be encoded more densely; (2) the bandwidth to mem-

ory for loading configurations can be widened; and (3) configurations can be cached in the

array for reuse.

3.1.3 Configuration encoding and loading

Part of the reason it takes a Xilinx XCV1000E 12.5 ms to load a full configuration

(Section 2.3) is the configuration’s size of over 800 kB—more than 256 bits for each four-

input lookup table. Existing FPGAs have often used a relatively decoded representation for

configurations. To take a simple case, most logic block inputs can be connected to a choice

of nearby wires in the network, only one of which can be selected for the input. If there

are n wires to choose from, a typical FPGA might encode this choice with n bits, most of

which will be 0’s indicating no connection.1 A more compact encoding would use log n bits

to choose a wire to connect to a logic block’s input. It will be seen later (Section 4.1.3) that

the encoded form in this case is not always more costly for the array hardware.

Besides a dense encoding, outright compression can be employed, since there is

often obvious redundancy among the logic blocks in a configuration. A 16-bit-wide arith-

metic operation, for instance, might use 16 contiguous logic blocks, all configured exactly

the same. Such redundancy could be compressed out with a simple run-length encoding,

for example. Configuration compression has been studied by Hauck and his students, as

well as others [31, 32, 50, 61].

Although compression can reduce the bandwidth needed to read a configuration

from memory, maintaining a compressed form within the array adds hardware cost without

much benefit. Certainly the array must have sufficient storage space for a fully uncompressed

configuration, since legitimate configurations need not have any redundancy; every logic

1Due to the way FPGA networks work, a connection might be made between more than one wire and

the logic block input. In general, though, most potential connections will not be selected.
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block might be configured differently. Adding support for run-length encoding in the array

would require extra wires and multiplexors to distribute configuration bits when they could

simply be stored redundantly where they are needed. To avoid this cost, a compressed

configuration must be decompressed as it is read into the array. If the bottleneck for

loading configurations is not at the memory system but instead at the wires into the array,

then run-length compression may be of little value.

With configuration sizes running several kilobytes at a minimum, it makes no

sense to load configurations through a first-level (L1) cache that is probably smaller than

the typical configuration. Configuration loading should therefore bypass the L1 data and

instruction caches. With synchronous DRAM, the second-level (L2) cache could be bypassed

as well, because bandwidth, not latency, is the critical factor when loading kilobytes at a

time. However, not all memory systems are set up to support bypassing the L2 cache. If

configurations can be kept down to a few kilobytes, there is less reason to be concerned

about polluting an L2 cache that is probably a half megabyte or more.

A typical 500 MHz general-purpose computer could easily sustain 8 GB/s of band-

width from its L2 cache. In comparison, commercial FPGAs often load configurations

through as little as a 1-bit-wide shift chain, which (optimistically) at 500 MHz could load

63 MB/s. Newer FPGAs have wider configuration paths; the Xilinx XCV1000E, for in-

stance, loads 8 configuration bits at a time. Nothing really prevents a custom reconfigurable

unit from having a configuration interface equal in width to the L2 cache data bus in order

to match the available memory bandwidth. L2 cache buses are commonly 128 to 256 bits

wide.

With many FPGAs there exist invalid parasitic configurations that can destroy

the device. In the configurable network between logic blocks, wires are often physically

connected to more than one tri-state driver output; a valid configuration must select just

one driver for each wire at any one time. If every tri-state driver is controlled by its own

configuration bit, it is easy for multiple drivers to be selected accidentally for the same wire,

causing the FPGA to burn out.

Parasitic configurations cannot be tolerated on a general-purpose computer, where

any application might load a configuration of random bits. A few FPGAs such as the Xilinx

6200 have encoded their configurations in a way that guarantees no possible configuration

is parasitic. While this sounds attractive, it has a hardware cost. The 6200 replaced simple

network bus wires with safer but more expensive multiplexors, perhaps resulting in an
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increase in FPGA size of 20 to 30%.

An alternative solution is to verify a configuration’s validity as it is being loaded.

The processor could simply refuse to load a configuration that fails to pass the test. This

approach should require less die space than the multiplexor-based solution because a smaller

amount of checking hardware can be used repeatedly (time-multiplexed) as each piece of the

configuration is streamed into the reconfigurable array. (This technique will be promoted

in Section 4.3.1.)

In addition to loading configurations in whole, some FPGAs allow the array’s con-

figuration to be modified through editing operations. Again on the Xilinx 6200, for example,

individual logic block configurations could be updated without the need to load a complete

configuration for the entire FPGA. Although not a problem on the 6200, configuration

editing is dangerous when parasitic configurations are possible. Since there would seem to

be no way to revalidate an edited configuration without streaming it all past the checking

hardware again, editing must be considered incompatible with the technique of validating

configurations during loading.

The only time an array configuration needs to be written back to memory is on

a context switch. Even then, if the current configuration was never edited, and if its copy

in memory (from which it was originally loaded) is still intact, the write can be skipped;

the configuration can simply be reloaded from the original when the process resumes. If

array configurations never needed to be written to memory, context switches could avoid

the write and thus be a little faster. To ensure that configurations never need to be written

out, the architecture only needs to forgo support for configuration editing and also require

that configurations not be modified in memory while loaded in the array.

It is not clear how valuable configuration editing might be in practice. Assuming

configurations are used for inner loops in a program, there are two circumstances under

which editing might be appropriate:

• If configurations for two independent loops share a common structure, the second one

could be “loaded” by merely editing the first one.

• When an inner loop is nested inside another loop, the inner configuration will be called

upon again and again. This configuration might benefit from small edits as the value

of a variable changes in the outer loop.

The second of these seems more compelling. However, when weighed against the hardware
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expense of ensuring that there are no parasitic configurations and the time expense of writing

configurations out to memory on context switches, support for configuration editing seems

dispensable.

3.1.4 Caching of configurations

To save loading time when multiple configurations are regularly reused, the array

can include a cache of recently loaded configurations. A cache is especially valuable for

the expected programming model, in which a configuration might not be loaded until just

before it is needed. When a program requests to load a configuration that is already in the

cache, the “load” should be able to activate the cached configuration in only a few clock

cycles.

Like other caches, a configuration cache should be dynamically managed in hard-

ware, in part to simplify programming, but also so that the cache’s size can vary with imple-

mentation without programs having to be explicitly adjusted to correspond. A dynamically

managed cache can often be more efficient, such as when two multitasking processes each

have a working set of configurations that fills half the cache size. A cache that was statically

managed by each program would be more difficult to share.

The only reasonable place to store the cache is to distribute it among the array

logic blocks. Assuming the reconfigurable array is roughly square in size with area A, its

perimeter grows only as
√

A. If the configuration cache were kept outside this perimeter,

the available bandwidth per array block would be proportional to 1/
√

A, decreasing as the

array grows. Already, FPGAs do not have enough wires across their periphery to load a

configuration that way in only a few clock cycles. There is simply not enough internal

bandwidth in an FPGA to move that many bits very far that quickly.

A configuration cache distributed within a reconfigurable array can be divided

into equal planes, where the number of planes is the number of full configurations the cache

can hold (Figure 3.2). As not all useful configurations will need the entire array, to achieve

better cache utilization it must be possible to keep multiple less-than-full-size configurations

in each plane. But it would be pointless to store a configuration at a particular location in

a cache plane if the configuration could not also be executed at that location in the array;

otherwise, the problem of quickly moving a configuration a large distance within the array is

resurrected. Consequently, the array must be able to load and execute small configurations
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Figure 3.2: A configuration cache with multiple cache planes. Each plane can store one
full-size configuration or multiple smaller configurations.

at various different positions so that a greater number of configurations can be kept in the

cache.

The exact positions where smaller configurations can be loaded into the array will

depend on the array design. The “perfect” array would let a configuration be arbitrarily

shifted to any position. In reality, the wire network between logic blocks often does not

look the same with respect to every logic block. Some FPGAs, for example, divide logic

blocks into groups of 4× 4, with a richer interconnect available within a group than between

groups. On such an array, a configuration can only be shifted by multiples 4 blocks (at best)

without all logic block interconnections being thoroughly rerouted.

If the cache is managed automatically in hardware, the position in which a small

configuration gets placed in the array ought to be invisible to the program that loads it. The

“first” logic block of a configuration should always appear as logic block 0 to the program,

regardless of where the configuration is actually placed. The hardware should thus translate

between logical block addresses and physical block addresses, just as it translates between

logical and physical memory addresses for virtual memory.

To save a little on die area, cached configurations might be stored using dynamic

memory. Certainly, a cache access time on the order of 10 clock cycles would be acceptable

if configurations really execute for substantially longer on average. Assuming there are only

a few cache planes, the dynamic memory circuitry need not be very complex. Of course,

a dynamic memory cache would require regular refreshing, even while a configuration is

running. Moreover, if parasitic configurations are a possibility, it is important to remember

that dynamic storage cells are susceptible to upsets. Some redundancy would be necessary

to guard against catastrophes. If the probability of errors is small enough, it should be
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sufficient to abort the current process in the event such an error is detected, the goal being

solely to protect the hardware against an unlikely disaster.

3.1.5 Array clocking

Commercial FPGAs allow each configuration to have a different clock frequency,

or even multiple clocks at different frequencies. It is a development task (either for the tools

or for a human designer) to ensure that no signal path exceeds its maximum allowed delay.

Often the clock frequency is simply set to the highest value that works for a particular

configuration.

In practice, the relationships between the different FPGA components’ delay times

varies with each FPGA implementation, making it hard to predict in advance the speeds

at which two versions from the same FPGA family will execute the same configuration.

This is a problem for upward compatibility of software on a general-purpose computer,

where all configurations originally created on one version of a processor must be runable

at a known clock speed on a newer version of the processor without having to be retuned

for the new part. Moreover, allowing the reconfigurable unit to have a flexible clock speed

would necessitate complex synchronizers between the reconfigurable array and the rest of

the system, introducing additional latency and a risk of metastability.

Rather than specify component delays as precise times that could change with

each processor generation, delays can be defined in terms of the sequences that can be

fit within some fixed array clock cycle determined by the implementation. Such rules can

be set once-and-for-all by the architecture, with implementations responsible for ensuring

that configurations that follow the rules run properly. For example, the architecture could

specify that a signal can propagate a certain distance between logic blocks within one array

clock cycle. An implementation is responsible for setting the array clock speed slow enough

to guarantee this rule. The array clock need not be identical to the processor clock, but

any actual implementation would surely use a simple ratio between the two.

One disadvantage to a fixed clock is a potential loss of efficiency due to the forced

quantitization of time. If every path between registers in a specific configuration happens

to be short enough to propagate in less than a full clock period, the configuration could run

faster with a faster clock. On the other hand, this type of loss can already be suffered in the

main processor. The processor pipeline must assign some integer number of clock cycles to
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the execution of each functional unit, even though a functional unit’s actual delay might be

0.7 or 1.1 cycles. A program that performs many bitwise logical operations, for example,

might accumulate a large proportion of “unproductive” time from the fact that a logical

operation does not require the full clock period allocated to it. Some efficiency is usually

worth sacrificing to simplify the architecture and thus permit a range of implementations

of varying performance and cost.

Aside from simplifying the overall architecture, a fixed clock enables implementa-

tion techniques that would be impractical otherwise. Precharged circuits are one example:

with a known fixed clock period, the array hardware could implement a precharged carry

chain that would likely be faster than other carry propagation circuits. Such techniques

might even compensate for the inefficiency caused by a nonadjustable clock.

Unlike a superscalar processor, which executes instructions at a variable and often

unspecified rate, the architecture of a reconfigurable array must include a precise conception

of time as measured in array clock cycles. To perform a certain computation, a configuration

must execute for a specific number of clock cycles; any more or less might not perform the

exact computation desired. To make it more interesting, the number of clock cycles needed

will not always be known in advance, because, in particular, the number of iterations through

a loop can be data-dependent. To handle such cases, the array needs a way to signal that

computation is complete and array execution should be halted. If the processor is waiting

(interlocked) on array completion, this will also indicate that processing can continue in

the main processor pipeline. Freezing the array when it is inactive can be accomplished in

hardware by gating the array clock, thus forcing array registers to hold their last values

indefinitely.

Besides disabling the array when it is inactive, it may be necessary at times to stall

array execution for a few cycles while active. If the configuration cache uses dynamic storage,

for example, cache refreshes may require regular suspension of array execution. The next

section also discusses stalling the array to hide the latency of memory accesses made from

the array. In both these cases, array execution must be delayed due to irregular or hidden

events. Rather than add complexity to every configuration to handle such occurences,

the array can be stalled transparently by the hardware by briefly gating the clock for

the necessary number of cycles. Array clock cycles in this way become logical execution

increments not necessarily connected to real time.
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3.1.6 External interface and access to memory

The main reason for bringing the reconfigurable unit closer to the processor is to

bring it closer to the processor’s data, and that especially means the memory system where

most of the data is stored. If the reconfigurable array is in the main pipeline, it makes sense

to use the existing processor load and store instructions to transfer data between memory

and the main register file, from which values can be forwarded to the reconfigurable unit

the same as for any functional unit. However, Section 3.1.1 argued that putting the array

in the pipeline and depending on the main register file for storage will limit the speedups

obtainable by the array.

Even with the array attached via a coprocessor interface, we could continue to

let the main processor perform memory accesses, copying to and from the array for each

access. This might be practical when the sequence of memory accesses is easily predictable.

In other cases, though, it would be necessary to communicate information from the array

to the main processor for each access, resulting in the following steps for a memory load:

(1) copy address (or other information) from the array to the main register file, (2) load

from memory to a register, and (3) copy the loaded value to the array. Using this scheme,

the memory bandwidth available to the array might be half that of the main processor,

with double or more latency.

If the reconfigurable unit is actually going to compute faster than the main proces-

sor it will need more bandwidth to memory, not less. A good connection to memory is also

needed for loading configurations quickly. Assuming the array already contains paths for

copying the contents of array registers back and forth to the main processor, essentially all

that remains is to allow those paths to be diverted onto the bus over which configurations

are loaded from memory (Figure 3.3). The main complication is supplying an address and

the necessary control signals to the memory hierarchy.

Inside the array, physical wires might be needed for four distinct purposes:

1. interconnecting logic blocks,

2. bringing configurations in from memory,

3. transfering data to and from the main processor, and

4. transfering data to and from the memory system.
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Figure 3.3: Bus through the array for loading configurations and for moving data to and
from memory and the main processor register file.

An array design does not have to contain distinct wires for each of these purposes, however.

Commercial FPGAs typically support only the first two cases, with separate sets of physical

wires for each. Because the interconnect between logic blocks is configured by loading a

configuration from memory, it probably does not make sense to rely on the former to do

the latter, so there is a legitimate claim for keeping cases 1 and 2 distinct. On the other

hand, when it comes to communicating with the processor or memory, either of the first

two networks might do the job of moving values into and out of registers within the array.

If the array includes a configuration cache, it was argued earlier that configurations

less than full size need to be loadable at multiple different locations in the array in order

to make better use of the cache. If a configuration bus is run across the entire array,

configurations can be loaded quickly to any array location (Figure 3.3). This bus would

naturally be connected to the full bandwidth of the memory system at one end. It would

be logical, therefore, to use the same bus to support memory accesses from the array

while the array is executing. By sharing the connection to memory, this arrangement

might preclude the possibility of preloading the next configuration while the current one is

running. However, memory bandwidth is a limited resource; if an executing configuration

can saturate the available bandwidth, none would be left over for preloading anyway, so the
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sharing of a bus to memory would not really be the bottleneck.

Since it would be convenient to give the main processor random access to all the

register state in the array as well, values could be transfered to and from the processor’s

register file over the same bus, at least while the array is not active. All told, this would

make the proposed bus the main external connection for the array, with direct random

access to any logic block. The configurable wire network between logic blocks would remain

a separate entity.

When a configuration requests to load a value from memory, we can expect there

to be a few cycles of latency before the value can be returned. There is no point in forcing

the array to sit idle during that time; however, if a configuration is to continue executing

in the meantime, it will need to know the array clock cycle at which the memory value will

be returned. Preferably, the memory latency can be known at the time the configuration

is created, so extra control circuitry does not have to be included for synchronizing the

configuration’s calculations to a variable memory latency. But in truth, the memory latency

can vary from one implementation to another, and in fact can vary depending on whether

the requested value is in one of the memory caches. Memory loads can even complete out

of order on some systems.

These complications can be avoided with a simple compromise: The configuration

can specify the exact latency it expects for all memory loads, and the array’s interface to

memory can be responsible for ensuring that those expectations are met. When a memory

load requires more time than the configuration indicates (for example, because of a cache

miss), the array clock can be automatically stalled to let the memory system catch up.

Conversely, if the memory returns data more quickly than expected, the memory interface

must hold onto it for the intervening cycles. With this technique, the array can initiate

a new memory access every array clock cycle, with the results returned in a predictable

pipelined fashion with respect to array execution.

3.1.7 Multitasking

To support multitasking, it must be possible to freeze and swap out execution

on the reconfigurable unit for a context switch. The first step of any context switch is a

processor interrupt or trap. This can proceed as normal, except for one special case: At

the time an interrupt occurs, the processor could be interlocked awaiting completion of
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execution on the reconfigurable array. Assuming the array is outside the main processor

pipeline as proposed in Section 3.1.1, the interlocking instruction must be an attempt to

read a result from the array. But in this case, the interlock can simply be ignored and the

interrupt taken at the point in the instruction stream just before the interlocking instruction.

When the process resumes, the same instruction to read from the array will be re-executed

and the interlock reinvoked.

Once the interrupt or trap has been taken, the operating system’s context-switch

software must suspend and save the current array state and also restore and resume that of

the process being swapped in. A new instruction will be needed to permit the processor to

force a halt to array execution, although this might employ essentially the same mechanism

the array uses to halt itself when done. If configurations cannot be edited in the array

(Section 3.1.3), there is no need to write out the current configuration. However, the

memory address from which the current configuration was originally loaded (and thus the

address of the copy presumably still in memory) will have to be saved, and for this reason the

hardware has to keep a record of the memory address from which the current configuration

was loaded.

If the array can access memory directly and can operate in pipeline with memory

loads (as proposed in the previous section), then halting the array leaves in-progress loads

suspended in limbo. Memory operations can continue to completion from the perspective of

the memory system, but values that have been loaded from memory and not yet accepted

by the array must be saved and restored. This will require additional support in the

architecture, most likely involving numerous special registers not accessible from ordinary

“user mode” programs.

Lastly, if the main processor has random access to all array data registers, array

data state can be saved and restored using ordinary processor instructions. The complete

sequence for swapping out array execution to memory is then the following:

1. Force a halt of array execution.

2. Save the state of memory loads still in the pipeline, using special architectural support

provided for this step.

3. For each array register, read the register value into the main register file and store it

to memory.
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4. Save the memory address of the current configuration.

Restoring a previously saved context is mostly the reverse process. One interesting

twist concerns signal propagation after the array’s register state has been restored. Unless

explicitly outlawed, the propagation path between two registers can be made arbitrarily

long in a configuration; this is legitimate so long as the configuration always holds the

values of source registers constant for the full time it takes signals to propagate through

to the destination registers. When a context is swapped out, the array might be halted at

the moment just before a long-propagating signal was ready to be latched at its destination

register. In that case, when the same context is later swapped back in, array execution will

not be ready to proceed until signal propagation has had a chance to retraverse the path

to the destination register. The operating system must ensure that this occurs before array

execution is resumed.

Rather than try to ascertain the exact time needed for any configuration, it is easier

simply to put a time limit on the propagation between registers in a valid configuration. A

reasonable limit might be as short as 8 array clock cycles, which would certainly not be a

burden to wait in a context switch. Actually, such a short time could easily be overlapped

with other context switch activities such as restoring the main register file.

The complete sequence for swapping array execution back in is:

1. Load the configuration from memory (possibly still in the configuration cache).

2. Restore all array registers by reading from memory and copying to the array.

3. Restore the state of outstanding memory loads, using special architectural support

provided for this step.

4. Allow signals time to propagate in the array. (The architecture or programming

conventions place a limit on how long this is required to be.)

5. Resume array execution.

3.1.8 Servicing page misses

As is often the case, the most troublesome context switches are page misses. Unlike

typical RISC instructions, if an array-initiated memory access causes a page miss, array

execution cannot be backed up to reinitiate the access after the relevant memory page has
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been brought in from disk by the operating system. Thus, failed memory accesses can only

be completed with the participation of the hardware.

Assume that the failed access is a store, causing a trap that initiates a context

switch. Since array execution cannot be moved backward, the array will not reinitiate the

store when it resumes; the operating system will have to complete the store itself after

the missing page has been brought in from disk. To do this, the operating system needs

only the failed address and the data to be written, both of which could be made accessible

through additional special registers existing in the interface between the array and memory.

(The array memory interface cannot simply remember this information and automatically

reattempt the access when the process is resumed because with multiple processes running

there might be any number of page misses in the process of being serviced at any one time.)

If a page miss occurs on a load access, the operating system can complete the load,

but the data loaded must be inserted into the pipeline of outstanding loads in the array

memory interface. It was already suggested in the previous section that this state must

be made visible to the operating system for context switches, so it could be that no more

hardware is needed to support completion of failed loads.

A distinction needs to be made between a memory request that fails because of

a nonresident virtual memory page and one that fails because of an invalid address. To

support deep pipelining of operations on a stream of data it is important to be able to

load data in advance of operating on it. Before processing has completed on the last of the

input stream, additional speculative loads past the end of the input stream will often be

performed, and these could be at invalid addresses.

To prevent programs from being terminated because of speculative loads to invalid

addresses, it is possible simply to ignore invalid virtual address exceptions and return arbi-

trary data. Ignoring these exceptions can make debugging more difficult but cannot cause

a correct program to fail. In contrast, speculative loads at virtual addresses that are valid

but not currently resident must definitely cause a trap to the operating system so that it

can service the page fault.

3.2 Designing reconfigurable hardware for computation

Almost any FPGA design could be adapted for the reconfigurable unit. However,

since commercial FPGAs are generally not intended to be processor functional units, they
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may not be best suited for that purpose. This section considers how reconfigurable hardware

might be better tailored for accelerating software loops.

3.2.1 Dominance of wires

One issue with a major bearing on array design is the extent to which FPGAs are

normally dominated by their configurable networks, both in terms of circuit area and delay.

In 1993, Rose et al. asserted that “the area for routing is usually larger than the active area

. . . representing from 70 to 90% of the total area” [66]. And the significance of the network

only increases as FPGAs grow. Six years later, Betz and Rose have reconfirmed that “the

delay of a circuit implemented in an FPGA is mostly due to routing delays, rather than

logic block delays, and most of an FPGA’s area is devoted to programmable routing” [7].

This situation favors the inclusion of special-case circuitry to reduce the number

of logic blocks needed for common tasks and/or to provide faster short-cut connections

between logic block, even at the expense of making the logic blocks themselves somewhat

larger and slower. The prototypical special-case circuitry is the carry chain support found

in most commercial FPGAs. While it is obvious how such special paths bypass the slow

general network, there are secondary effects that are also beneficial:

• With direct connections among neighbors, logic blocks require fewer physical connec-

tions to the network, which allows the general network to be more efficient. (Fewer

network taps could mean less loading on the wires, for example.)

• The general network will have fewer signals to carry, again allowing it to be smaller

and more efficient. (Because fewer wires are needed, the network taps can be smaller

and faster because there are fewer wires to choose from.)

The benefits compound when special logic block circuitry reduces the number of blocks

needed to perform a common operation:

• With fewer logic blocks in the paths between circuit inputs and outputs, fewer network

traversals are needed, thereby reducing total function delay.

• By fitting configured circuits into a smaller area of the reconfigurable hardware, each

network traversal between two blocks may have less distance to travel and thus may

be individually faster.
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• Conversely, with denser packing of configurations, more functionality can be config-

ured into the same die area.

However, as with anything, more is not always better when it comes to logic

block complexity. If special-purpose circuitry does not get used—presumably because the

functionality is rarely needed—it only eats up space and acts as a drag on performance.

The special features added to a logic block must be chosen judiciously. For reconfigurable

hardware intended for computation, the standard arithmetic operations would seem to be

a good place to start.

3.2.2 Bit-serial, bit-parallel, and bit-pipelined arithmetic

The basic arithmetic operations can be performed in various ways, corresponding

to different engineering tradeoffs. A major distinction between the different techniques is the

way in which numeric values are represented and delivered from one operator to the next.

If we restrict ourselves to the usual binary representation, the primary categories are bit-

serial, bit-parallel, and bit-pipelined. Each style can lead to different optimization structures

in the reconfigurable array, so it is worth attempting to assess the relative advantages of

each. (For more along the lines of the following discussion, see Kollig and Al-Hashimi [44].)

Bit-serial corresponds to the way addition is taught in grade school: The least

significant digits are added first; then the next pair of digits are added along with any carry

out from the previous place; then the next, etc., until all digit positions have been processed

in turn. Implemented in hardware (Figure 3.4(a)), a bit-serial adder is little more than a

bit adder with the carry looped back around. The two operands are each fed into the adder

over a single wire, one bit (binary digit) per clock cycle, starting with the least significant

bit first. The sum is generated at the same rate. For n-bit operands, it obviously takes n

clock cycles to form the complete sum. On the other hand, if the adder output is used as

an input to another adder, the second addition does not need to wait the full n cycles for

the first to complete but can begin as soon as the least significant sum bit from the first

addition has been computed. By mostly overlapping the operations in this way, two back-

to-back additions can be completed in n + 1 clock cycles, only one cycle more than a single

addition. This overlap effect extends to any number of additions, and the same applies to

subtractions, comparisons, and—with more hardware—multiplications. For this reason, bit-

serial arithmetic has often been used to obtain a minimal-area implementation of functions
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Figure 3.4: (a) Bit-serial addition. (b) Bit-pipelined addition. (c) Bit-parallel addition.
The boxes labeled P/G calculate the propagate and generate signals for the carry chain.

such as digital FIR filters that require only addition, subtraction, and multiplication.

Even with maximum overlap, bit-serial arithmetic can only output one n-bit final

result every n clock cycles. A bit-pipelined adder (Figure 3.4(b)) is similar in concept to a

bit-serial adder, but instead of making a lone bit adder add each bit in turn, n individual bit

adders are arranged in an assembly line to form a full n-bit adder. An addition operation

occurs much as it did before, except that now each bit position is handled by its own

dedicated bit adder. Now as soon as the first (rightmost) bit adder has summed the two

least significant bits, it is free to start another addition. Consequently, n additions can be in

progress at any one time, giving an overall rate of one n-bit addition per clock cycle. Aside

from the n-factor increase in hardware and throughput, bit-pipelined arithmetic shares the

same characteristics as bit-serial arithmetic.

Standard processors perform a full 32- or 64-bit addition in a single processor clock

cycle. If the intermediate carry registers were removed from Figure 3.4(b) and the clock

made n times slower, the result would be a ripple adder that could complete in a single

(but much longer) clock cycle. Such an adder could be called bit-parallel because all the

bits of an input or output value are latched together on a single clock edge. However, ripple

adders are not the best; modern bit-parallel adders employ a more sophisticated technique
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illustrated in Figure 3.4(c). The critical part of a bit-parallel adder is the carry propagation,

which can be factored out as a separate, highly-optimized entity. At each bit position, either

the carry out is known immediately from the two operand bits at that position, or the carry

out must be the same as the carry in from the position one to the right. Each bit position

calculates propagate and generate signals that determine the carry out as follows:

propagate generate carry out

0 0 0
0 1 1
1 – same as carry in

The job of the carry chain unit is to propagate carry values as quickly as possible across

all positions for which propagate = 1. For a 32-bit addition, this can be done much faster

than a ripple adder, albeit using considerably more hardware. Overall, a bit-parallel adder

operates with less total latency for each addition but also with less potential throughput in

terms of additions per unit time than a bit-pipelined adder.

The bit adders for bit-serial and bit-pipelined addition are simple enough to be

easily implemented by the lookup tables of typical FPGAs. The main issue is the number

of logic blocks needed for each bit adder. If each logic block has exactly one lookup table

and one output to the wire network as in Figure 2.7, then it will take two logic blocks to

make each bit adder: one to calculate the bit sum, and the other to determine the carry out

to the next bit position. Squeezing this down to a single logic block requires that a block

be able to output two independent bit values. The obvious way to do this is by providing

each block with two drivers onto the general wire network. However, addition occurs often

enough that, for reasons explained in the last section, it is usually more efficient to build in

a dedicated carry connection between neighboring blocks along every row or column of the

array. Figure 3.5 shows two possible forms this carry connection could take.

Most commercial FPGAs include support for bit-parallel adders, although not

necessarily anything better than good ripple adders. Typically, hardware for calculating and

propagating a carry from one logic block to another is specified in the FPGA architecture,

but the physical FPGA might implement this in alternate ways. (Note Xilinx’s carry chain

in Figure 2.8, for example.) This leaves open the possibility that a sophisticated carry

chain unit could be sereptitiously employed in some existing FPGA chips. Whether this

has actually been done or not, the existence of good bit-parallel carry units in FPGAs is

not outside the realm of possibility.
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Figure 3.5: (a) Simple extension to a basic four-input-lookup-table-based logic block to
implement a dedicated carry connection between neighboring blocks. When configured as
a bit adder, one table calculates the sum bit and the other the carry out. To form a four-
input lookup table instead, the two three-input tables are multiplexed down by the fourth
logic block input. (b) Support for bit adders in the Xilinx 4000-series logic blocks. The
main lookup table determines the sum bit, while dedicated circuitry generates the carry
out appropriate for an addition or subtraction. This arrangement allows for a faster ripple
adder than the construction on the left. (As seen in Figure 2.8, two such bit adders fit in
each Xilinx logic block.)

+

+
+

+
+

+
+

Figure 3.6: Skew conversion from bit-parallel to serial or pipelined form and back again.
Skew conversion is required for all initial inputs and final outputs of a computation.
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Figure 3.7: A comparison followed by a multiplexor, implementing the C expression ( a <

b ) ? c : d. Skew conversions are needed for c, d, and the result, totalling roughly 3

2
n2

bit registers for bit width n.

With appropriate assistance, all three forms—bit-serial, bit-pipelined, and bit-

parallel—have a common statistic: n logic blocks can perform an average of one n-bit

addition every clock cycle. The clock speed for bit-serial and bit-pipelined can be signifi-

cantly faster than that of bit-parallel, however, causing bit-parallel to lag behind, at least

according to this metric. Even so, bit-pipelined is not optimal in all circumstances, due to

the following effects:

• Interaction with the rest of the system ordinarily must be done in bit-parallel form,

necessitating skew conversions at function inputs and outputs (Figure 3.6). On a

memory access, for example, all bits of the address must be delivered simultaneously,

and the data must be read or written the same way. The same is true when values

are transfered to or from the main processor. A circuit with a lot of such interaction

will require constant skewing and deskewing of inputs and outputs, nullifying any

throughput advantage bit-pipelined has over bit-parallel.

• Any feedback from high-order bits to low-order bits introduces a delay equal in clock

cycles to the bit-width. Figure 3.7 shows the effect for the simple C expression

( a < b ) ? c : d.

In this case, the entire comparison must complete before any bit of the selection can
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proceed. A similar thing occurs for shift operations, depending on the shift distance.

As with skew conversion, numerous bit registers are needed. The figure shows that for

data values 6 bits wide, 57 bits of registers are needed. When the data is 32 bits wide,

a total of 1616 bits of registers are needed, or the equivalent of fifty 32-bit registers.

Moreover, if any of these operations are part of a feedback loop, the latency of the

entire loop is considerably reduced, making bit-parallel techniques actually faster.

Tables 3.1 through 3.3 attempt to analyze these differences in more detail. The

first table presents rough formulas for area, latency, and throughput of the three styles for

a simple addition and for the comparison/multiplexor example. Bit latency is the time

before a subsequent operation can start work on the result of a previous operation; while

turnaround refers to the time before the same hardware can begin operating on the next

set of values coming down the pipeline. Clock frequency differences are accounted for in the

formulas. The area cost of skew conversion is also tabulated in the bit-serial and bit-parallel

styles.

Table 3.2 simplifies these formulas for the following conditions and assumptions:

• The operation bit width is 32. (Although data values may often be of smaller size,

any application that manipulates pointers or addresses will need to operate on 32-bit

or even 64-bit quantities.)

• The wire network consumes two-thirds of the area of the reconfigurable array.

• Traversing the network between nearby logic blocks takes the same time as performing

a simple lookup-table operation.

• Traversing the network a distance of 32 logic blocks takes three times as long as for

nearby blocks.

• The area needed in each block to implement a decent bit-parallel carry propagation

unit is double that of the rest of the lookup-table-based logic block.

• Using such a carry unit, a 32-bit bit-parallel addition takes three times as long to

execute as a simple table lookup.

Under these assumptions, Table 3.2 makes it easier to judge the relative merits of each form.

Some differences between bit-pipelined and bit-parallel arithmetic worth noting:
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bit-serial

area bit latency turnaround

addition W + L + R V + K n(V + K)
comparison + mux 2W + 2L + (2n + 2)R (n + 1)(V + K) n(V + K)
skew conversion (n− 1)R

bit-pipelined

area bit latency turnaround

addition nW + nL + nR V + K V + K

comparison + mux 2nW + 2nL +
(

3

2
n2 + 5

2
n
)

R (n + 1)(V ′ + K) V ′ + K

skew conversion 1

2
(n2 − n)R

bit-parallel

area bit latency turnaround

addition nW + nL′ + nR V + K ′ V + K ′

comparison + mux 2nW + 2nL′ + (3n + 1)R 2(V ′ + K ′) V ′ + K ′

n : data size in bits
W : area of wire network corresponding to a single logic block
L : area of a simple logic block function configurable as a bit adder or multiplexor
L′ : area of a logic block including a carry chain supporting bit-parallel addition
R : area of an externally accessible clocked register
V : time to traverse the network between close logic blocks
V ′ : time to traverse the network between logic blocks n bits apart
K : time to perform a table-lookup logic block function
K ′: time to perform an n-bit parallel addition

Table 3.1: Approximate formulas for area, latency, and turnaround for the different arith-
metic styles. All operands are assumed to become available at the same time.
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bit-serial

area bit latency turnaround

addition A + R T 32T
comparison + mux 2A + 66R 33T 32T
skew conversion 31R

bit-pipelined

area bit latency turnaround

addition 32A + 32R T T
comparison + mux 64A + 1616R 66T 2T
skew conversion 496R

bit-parallel

area bit latency turnaround

addition 53 1

3
A + 32R 2T 2T

comparison + mux 106 2

3
A + 97R 6T 3T

Table 3.2: Same as Table 3.1 with W + L = A, V + K = T , and the following additional
assumptions: W = 2

3
A, L = 1

3
A, V = 1

2
T , K = 1

2
T , n = 32, L′ = 3L, V ′ = 3V , and

K ′ = 3K.

number of retiming registers in each logic block
1 2 4 8 16 32

bit-serial addition 1.025 1.05 1.1 1.2 1.4 1.8
comparison + mux 67.7 35.7 19.8 12.0 8.4 7.2
skew conversion 31.8 16.8 8.8 4.8 2.8 1.8

bit-pipelined addition 32.8 33.6 35.2 38.4 44.8 57.6
comparison + mux 1656.4 873.6 492.8 307.2 224.0 201.6
skew conversion 508.4 268.8 149.6 91.2 64.4 55.8

bit-parallel addition 54.7 56.0 58.7 64.0 74.7 96.0
comparison + mux 218.7 168.0 117.3 128.0 149.3 192.0

Table 3.3: Relative total area under the same assumptions as the previous table and also
supposing that each configurable retiming register (R) takes 2.5% as much area as the rest
of the logic block (W +L). An integral number of logic blocks is used in every case, with the
size of the logic blocks varying depending on the number of retiming registers they contain.



51

• Bit-parallel addition has more latency and less throughput (slower turnaround) than

bit-pipelined, but the difference is masked some by the time it takes to traverse the

wire network between logic blocks.

• Bit-parallel forms suffer less variability in the latency of common operations. Al-

though a bit-pipelined addition is twice as fast as a bit-parallel one, the bit-pipelined

comparison-and-multipexor is an order of magnitude slower that its bit-parallel coun-

terpart.

• As stated before, a large number of register bits are needed for bit-parallel skew

conversion and for situations where high-order bits effect the outcome of low-order

bits.

To get a better handle on the area costs of each scheme, Table 3.3 gives the

relative total areas for the same operations under the assumption that adding a one-bit

retiming register to each logic block adds 2.5% to the die area of the array. Both the

per-logic-block area and the number of logic blocks needed by each operation vary with

the number of retiming registers included in each logic block. As more retiming registers

are added, the per-logic-block area increases but the number of logic blocks needed may

decrease. Furthermore, with more registers in each logic block, the risk that registers

will go unused also increases. This complex relationship plays out differently for different

operations, as shown in the table. With bit-pipelined arithmetic, the optimal number of

registers can be seen to be highly sensitive to the proportion of additions, multiplexors, and

skew conversions in each application, yet the choice cannot be varied once committed in

the physical hardware. Once again, the bit-parallel approach appears more robust overall

despite being less efficient for addition alone.

With so many accumulated assumptions and with numerous second- and third-

order effects not accounted for, it would be wrong to put too much stock in the exact figures

in these tables. The hope is simply that there is enough sense in the numbers to steer design

decisions in a productive direction. One issue not reflected in the tables, for instance, is the

greater power cost of distributing a faster clock throughout the array. Since bit-pipelined

and bit-serial techniques require a faster clock to have any chance of beating bit-parallel,

clock distribution power is another factor that might tip the balance toward bit-parallel

forms.
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Figure 3.8: A mixture of parallel, pipelined, and serial techniques. Bit-parallel adders 4 bits
wide are arranged into a pipeline to make a 16-bit adder, which can then be applied serially
to add values that are multiples of 16 bits in size (such as 32 bits or 48 bits).

The preceding analysis compared only pure bit-serial, bit-pipelined, and bit-parallel

techniques without allowing for anything in between. In fact, nothing prevents the tech-

niques from being used together in concert. Figure 3.8 illustrates, for instance, an adder

employing all three styles at once: 4-bit parallel adders are linked into a 4-stage pipeline

to make a 16-bit adder, which can then be applied serially over any multiple of 16 bits.

The choices presented in the preceding tables therefore are merely the extremes; the best

balance is likely to occur somewhere in between. The array might provide hardware for 8- or

16-bit parallel adders, for example, but fall back on pipelined or serial styles for composing

larger sizes. Finding the optimum balance would require a more refined cost model and a

better understanding of the applications than is possible a priori. But even in commercial

FPGAs, the current trend is clearly toward better bit-parallel support.

3.2.3 Array granularity

Array granularity is another core design issue. The granularity of a reconfigurable

device is its default data unit size, similar in concept to the natural word width of a proces-

sor. Array granularity is determined primarily by the number of bits that the wire network

requires be routed as a group from one logic block to another. Most commercial FPGAs can

route individual bits independently and so have a granularity of 1 bit. In contrast, research

designs such as MATRIX [56] operate only on units of 8 bits. The best choice depends on

the mix of sizes of data and control values within applications. Note that compared to a

fine-grained wire network, a network of granularity n has roughly 1/n the number of config-

uration bits per data bit routed. Array granularity has been studied for FPGAs in general

by Cherepacha and Lewis [14] and for PipeRench in particular by Goldstein et al. [22, 23].
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Larger-grain routing is generally associated with larger-grain data operations too.

In arrays with single-bit granularity like FPGAs, logic blocks typically support a generic

set of 1-bit-wide functions from inputs to outputs, implemented as lookup tables. With

larger granularity, on the other hand, logic blocks are more likely to be limited to the

usual arithmetic operations such as addition and multiplication, without any general table

lookups. Hence, granularity is a characteristic that tends to pervade the entire array, both

the wire network and the logic blocks.

Granularity should not be confused with support for bit-parallel operations dis-

cussed in the previous section. An array with 1-bit granularity can include hardware for

constructing fast 16-bit parallel adders. The carry chain structures would simply stretch

across multiple logic blocks, as they already do for many commercial FPGAs. In contrast,

an array with 16-bit granularity cannot construct an adder smaller than 16 bits because

that is the minimum data operand size.

The main tradeoffs between large and fine grain are:

• For bit-parallel operations on wide data widths, a fine-grained array can suffer from

much wasted redundancy in the configuration representation. To implement a wide

bit-parallel operator, a linear array of logic blocks is usually configured identically or

nearly identically for each bit of data width, which underutilizes the flexibility of a

fine-grained array. A large-grained array should be able to configure a wide operator—

at least if it is one of the standard arithmetic operations—with fewer configuration

bits. Denser configurations require less time to load into the array, and less area to

store within the array once loaded.

• On the other hand, for control logic or bit-serial operations, large granularity suffers

from much internal fragmentation in the allocation of resources in the array. If all

operands and operations are single bits, an array with 8-bit granularity wastes a factor

of 8 in wires and computation hardware over a 1-bit-granularity array. In terms of

area, this is a stronger effect than the wasting of configuration bits in the previous

point because wires and computation functions consume more hardware area than the

configuration storage.

Many applications can be roughly divided into data and control sections, with the

datapath comprising 8-bit-or-wider operations and the control involving mostly single-bit

random logic. Taking this as a rule, we can construct a simple model for how relative



54

α

1:25 1:15 1:10 1:6 1:4 2:5 2:3
0.2 2 2 2 1 1 1 1
0.3 4 2 2 2 1 1 1

c 0.4 4 4 2 2 1 1 1
0.5 4 4 4 2 2 1 1
0.6 8 4 4 2 2 2 1

c : proportion of area used for configuration storage in a logic block of granularity 1
α: ratio of control bit-ops to total bit-ops

Table 3.4: Granularity with least area per bit-op, according to a simple model.

die area is affected by three parameters: (1) the array granularity k; (2) the ratio, α,

of control bit-ops to total bit-ops; and (3) the proportion of area, c, that configuration

storage would consume in an equivalent array of granularity 1. Let Ak be the area per

logic block of the granularity-k array, and define A1 to be the area per logic block of a

corresponding array of granularity 1. If we assume the granularity-k and granularity-1

arrays have the same number of configuration bits per logic block, we can estimate that

Ak ≈ cA1 +k(1−c)A1 = (c+k(1−c))A1 . For granularity k, the area per application bit-op

is then

αAk + (1− α)
Ak

k
=

(

α +
1− α

k

)

Ak ≈
(

α +
1− α

k

)

(c + k(1− c))A1.

Supposing A1 to be a constant independent of k, this formula can be used to estimate the

relative die area consumed for different settings of the three parameters.

Given a particular α and c, the formula can be evaluated for different granularities

k to find the granularity with the least area overall per bit-op. Table 3.4 summarizes the

results of this exercise over a range of α and c, with granularity restricted to powers of 2.

The table shows, for example, that if the ratio of control bit-ops to data bit-ops is 1:15,

the optimal granularity is almost surely either 2 or 4, depending on the proportion of area

consumed by the configuration bits.

The analysis so far has assumed the reconfigurable array is homogenous, with a

single granularity throughout. If it were known that control never accounted for more than

10% of application bit-ops with the rest being wider, multi-bit data operations, it would be

smarter to build 10% of the array with single-bit granularity for the control and the rest

with a much coarser granularity for the datapath. This type of split has been advocated
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by Cherepacha and Lewis [14] and Wittig and Chow [80], and, as noted earlier, has been

adopted in the RaPiD reconfigurable array [15, 18, 19].

3.2.4 Multiplication elements

Among the usual arithmetic operations, multiplication is right behind addition

and subtraction in importance. In many applications, multiplication occurs as frequently

as addition. Unfortunately, it is also far more costly to implement than addition, a general

n-bit×n-bit multiplication being essentially equivalent to summing n n-bit terms. Given its

prevalance and impact, array design must consider how multiplication will be accomodated.

The simplest solution is just to build multipliers using the existing reconfigurable

hardware without giving the hardware any additional capabilities for the task. The core of

any multiplier is the ability to sum many terms together. Dedicated hardware multipliers

are typically made as a tree of carry-sum adders, also known as 3–2 adders, which input

three terms and output two numbers having the same sum as the inputs. Carry-save adders

can be very small and fast, and when replicated often enough they can eventually reduce any

number of input terms down to two. The last two terms are then added using a conventional

adder to obtain the final product.

Figure 3.9(a) shows how a carry-save adder tree for summing five terms might

be constructed in a reconfigurable array. (The “treeness” of the structure would be more

apparent with more than five terms.) At each stage, one set of logic blocks calculates the

carry result and the other the XOR (sum) result. The number of blocks can be cut almost

in half as shown in Figure 3.9(b) if a single logic block can perform two logic operations and

drive both outputs onto the network. But there is a potential cost to allowing this, since

such dual outputs might have only limited use elsewhere and are sure to impact network

delays negatively (Section 3.2.1).

Given the assumption that dedicated fast carry chains are already supported in the

reconfigurable hardware, a set of terms can be summed with a simple binary tree of adders

as in Figure 3.9(c). Naturally, each adder would be slower than the carry-save adders of the

first two structures, but the height of a full adder tree is less than that of the carry-save tree

for the same number of terms, which can mitigate the slowness of the full adders. A free-

standing hardware multiplier would never be implemented this way if for no other reason

than the wastefulness of laying down so many fast carry chains. But in the reconfigurable
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Figure 3.9: Various mutliplier structures. (a) A carry-save tree where the carry and XOR

operations must be done by separate logic blocks. (b) The same carry-save tree if logic
blocks can drive two outputs onto the configurable network. (c) A tree of adders making
use of special carry chain circuitry within the reconfigurable array. (d) A tree of three-input
adders. To implement three-input adders, logic blocks only need to perform an internal
carry-save addition in advance of the hardwired carry chain. Each box shown is actually a
collection of logic blocks sufficient to perform the operation on n operand bits.

number approx.
of operators tree height relative latency

(a) (b) (c) (d) (a) (b) (c) (d) (a) (b) (c) (d)
4 5 3 3 2 3 3 2 2 4 4 4 5
6 9 5 5 3 4 4 3 2 5 5 6 5

number 8 13 7 7 4 5 5 3 3 6 6 6 7.5
of 12 21 11 11 6 6 6 4 3 7 7 8 7.5

terms 16 29 15 15 8 7 7 4 3 8 8 8 7.5
24 45 23 23 12 8 8 5 4 9 9 10 10
32 61 31 31 16 9 9 5 4 10 10 10 10

Table 3.5: For each summation tree form in Figure 3.9, the number of n-bit operators,
the tree height, and the approximate relative latency for numbers of terms ranging from 4
to 32. From Section 3.2.2, the latency of a bit-parallel addition is taken as twice that of a
basic lookup table operation after wire traversal is taken into account. Correspondingly, a
three-input addition is assumed to have a latency 2 1

2
times that of a simple table lookup.
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hardware, the carry chains would presumably be there anyway and so can be used without

compunction.

By employing even wider adders, the summation tree height can be reduced further

as illustrated in Figure 3.9(d). A three-input adder is easily invented by giving logic blocks

the ability to perform one carry-save addition internally in advance of a full addition.

Significantly, this extension to the reconfigurable hardware is less drastic than increasing

the number of outputs from logic blocks into the configurable network.

Table 3.5 shows that, under reasonable assumptions (recall Section 3.2.2), the

latency of all four summation forms in Figure 3.9 is surprisingly about the same. On the

other hand, there is a drastic difference in the number of logic blocks consumed that appears

to favor overwhelmingly the last structure using three-input adders. Even if the latter form

turns out to be not quite as fast as the table suggests, decreasing the disproportionate size

of multipliers should have a positive impact all of its own, as explained back in Section 3.2.1.

3.3 Review

The main conclusions of this chapter can be summarized as follows:

• To achieve the best performance, the reconfigurable unit needs to contain its own

data state and should be designed to execute for more than a few clock cycles at a

time. The reconfigurable unit should not be integrated directly into the pipeline of the

main processor but instead should be attached as an on-chip coprocessor. To simplify

interlocking, processor instructions for initiating an operation on the reconfigurable

unit can be made separate from those that attempt to retrieve any results.

• The system should avoid relying on configuration preloading to hide loading times,

because separate compilation often defeats it and because there may not be any unused

bandwidth to memory while the reconfigurable unit is executing. Instead, the path to

memory should be as wide as possible, configurations should be encoded as densely

as practical, and the system should cache configurations for reuse.

• By not allowing configurations to be edited once loaded in the reconfigurable array,

context switches can omit having to copy the current configuration back to memory to

save it. A prohibition against editing also solves the problem of careless edits creating

parasitic configurations having more than one driver on a single wire. This in turn
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permits the integrity of a configuration to be verified just once as it is loaded from

external memory, using minimal checking hardware.

• If a configuration cache is supported, it should be distributed throughout the array

to minimize the time needed to load a configuration from the cache. Configuration

cache management ought to be done in hardware as it is for other processor caches.

To maximize cache utilization, it should be possible to place small configurations at

multiple alternative locations within the array and execute them correctly at any of

those locations. The location at which a configuration is placed should be invisible to

software.

• The clock within the array should be fixed by the implementation, with each clock

cycle corresponding to a logical execution step in the reconfigurable hardware. The

architecture can specify the computational “distance” that can be traversed in one

clock cycle, allowing configurations to be created that run unchanged on a range of

implementations. Whenever array execution must be stalled (such as for a cache

miss), the array clock can be automatically delayed without affecting the sequence of

logical steps executed by a configuration.

• To ensure the reconfigurable unit has sufficient memory bandwidth during execution,

it should be given its own connection to memory that is not dependent on the main

processor. Memory accesses can be performed via the same wires used to bring con-

figurations into the array from memory. Loads from memory must be pipelineable so

the reconfigurable hardware does not have to sit idle for several cycles during each

load.

• To support multitasking, a context switch must be able to freeze and swap out the

current configuration and restore it at a later time. Memory reads that are still in

the pipeline at the time of the context switch must be saved and restored along with

the visible data state. A limit must be placed on the maximum signal propagation

distance in any configuration so that configurations can be safely resumed after having

been swapped out.

• Page misses that occur due to memory accesses by the reconfigurable unit will have

to be completed by the operating system, because the reconfigurable hardware cannot
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be backed up to retry the access. To make pipelining easier in configurations, loads

at invalid addresses should be ignored, returning arbitrary data.

• Standard reconfigurable hardware is dominated mainly by the configurable network

between logic blocks, not by the logic blocks themselves. The reconfigurable unit

can be made more efficient in general if logic blocks are expanded with additional

functionality that succeeds in reducing the number of blocks needed for configurations.

• Bit-serial and bit-pipelined arithmetic can be more efficient than bit-parallel for basic

additions, subtractions, and multiplications, whereas for other mixes of operations,

bit-parallel is often superior. The bit-parallel style has less variance overall, and also

does not require the profusion of registers often needed for skew-converting bit-serial

and bit-pipelined arithmetic. To support bit-parallel arithmetic, a reconfigurable array

must include fast carry chains in hardware.

• For reconfigurable hardware with a constant granularity throughout, a granularity of

2 or 4 bits is likely to be most efficient in terms of chip area.

• If the reconfigurable array already contains carry chain hardware, multipliers can be

configured fairly efficiently as simple trees of basic adders. By extending logic blocks

to include a dedicated carry-sum adder before the carry chain, three-input adders can

be created, out of which even denser multiplier structures can be built.

A reconfigurable functional unit for a processor would presumably want to take account of

all these concerns.
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Chapter 4

Proposed Garp Design

An architecture has been proposed called Garp that attempts to address many of

the issues in the previous chapter. Garp has been designed to fit into an ordinary processing

environment that includes structured programs, software libraries, context switches, virtual

memory, and multiple users. The Garp architecture is first presented along with a brief

comparison with other related designs, and then a study is made of the suitability of Garp’s

reconfigurable hardware for implementation in VLSI.

4.1 Garp Architecture

Garp extends a MIPS-II-compatible processor with reconfigurable hardware de-

signed specifically for accelerating kernels in application software. An overall view of Garp

is provided by Figure 4.1. Garp’s reconfigurable array is often just called “the array” for

short.

The Garp main processor has complete control over the loading and execution

of configurations on the reconfigurable array. Several instructions have been added to the

MIPS-II instruction set for this purpose, including ones that allow the processor to move

data between the array and the processor’s own registers. Garp’s reconfigurable array

cannot read or write the main processor’s registers itself, but the array does contain data

registers of its own.

Garp makes external storage accessible to the reconfigurable array by giving the

array access to the standard memory hierarchy of the main processor. This also provides

immediate memory consistency between array and processor. Furthermore, Garp has been
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Figure 4.1: Overall organization of Garp. The boxes labeled Q are memory queues sup-
porting streams to and from memory as discussed in Section 4.1.9.

defined to support strict binary compatibility among implementations, even for its recon-

figurable hardware.

An overview of the array architecture and its integration with the processor and

memory are given in the next several sections. Complete details of the Garp architecture

are in Appendix A.

4.1.1 Array organization

Garp’s reconfigurable hardware is a two-dimensional array of entities called blocks

(Figure 4.2). One block on each row is known as a control block. The rest of the blocks

in the array are logic blocks, which correspond roughly to the logic blocks of a commercial

FPGA. The Garp architecture fixes the number of columns of blocks at 24. The number

of rows is implementation-specific, but can be expected to be at least 32. The architecture

is defined so that the number of rows can grow in an upward-compatible fashion.

The granularity of the array is set at 2 bits. Logic blocks operate on values as

2-bit units, and all wires are arranged in pairs to transmit 2-bit quantities. Operations on

32-bit values thus generally require 16 logic blocks. Multi-bit functions are naturally laid

out along array rows (Figure 4.3). With 23 logic blocks per row, there is space on each row

for an operation of 32 bits, plus a few logic blocks to the left and right for overflow checking,
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Figure 4.3: Typical natural layouts of multi-bit functions.
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rounding, control functions, wider data sizes, or whatever is needed.

A relatively fine granularity was preferred for Garp because an array with small

granularity can roughly emulate a larger granularity when desired, but the reverse is less

true. Fine granularity is thus a safer choice for a research design. Reconfigurable hardware

with 2-bit granularity also provides a starker contrast to the capabilities of a 32-bit proces-

sor. A granularity of 1 bit, on the other hand, was seen as unnecessarily extreme based on

the analysis of Section 3.2.3. By doubling up bits, the size of configurations—and thus the

time required to load configurations and the space taken up on the die to store them—is

nearly cut in half at the cost of some loss of flexibility.

As proposed in Section 3.1.6, four memory buses run vertically through the rows

for moving information into and out of the array. While the array is idle, the processor can

use the memory buses to load configurations or to transfer data between processor registers

and array registers. While the array is executing, it is the master of the memory buses

and uses them to access memory. Memory transfers are restricted to the central portion

of each memory bus, corresponding to the middle 16 logic blocks of each row (Figure 4.2).

For loading configurations and for saving and restoring array data, the entire width of the

memory buses is used.

A configurable network provides interconnection among the array blocks. Wires of

various lengths run orthogonally vertically and horizontally. Vertical wires can be used to

communicate between blocks in the same column, while horizontal wires can connect blocks

in the same or adjacent rows. Unlike most FPGA designs, there are no connections from one

wire to another except through a logic block. However, every logic block includes resources

for potentially making one wire-to-wire connection, independent of its other obligations.

An individual configuration covers some number of complete rows of the array,

which may be less than the total number of physical rows in the array. Distributed within

the array is a cache of recently used configurations, so that programs can quickly switch

between several configurations without the cost of reloading from memory each time. As

with traditional memory caches, the size and management of the configuration cache is

transparent to programs.

Data registers in the array are latched synchronously according to an array clock,

whose frequency is fixed by the implementation. No relationship between the array clock

and the main processor clock is required, although it is intended that the two clocks be the

same. A clock counter governs array execution. While the clock counter is nonzero, it is
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Figure 4.4: Simplified logic block schematic. (Compare with Figures 2.7 and 2.8.) Some of
the available functions can be seen in subsequent figures.

decremented by 1 with every array clock cycle. When the clock counter is zero, updates

of state in the array are stalled, effectively stopping the array. (Copies to the array by

the main processor may still modify array state.) The main processor sets the array clock

counter to nonzero to make the array execute for a specific number of array clock steps.

The array can also zero the clock counter itself if its computation is completed

before the counter reaches zero (because of an exceptional condition, for example). A very

large value in the array clock counter acts as an infinity which can only be returned to zero

explicitly by the array or the processor. For cases where the number of clock steps needed

to complete a computation is entirely data-dependent, the processor can set the counter to

infinity and the array can zero it when done.

The control blocks at the end of every row serve as liaisons between the array and

the outside world. Among other things, control blocks can interrupt the main processor,

zero the clock counter, and initiate data memory accesses to and from the array.

4.1.2 Array logic blocks

Each logic block in the array can implement a function of up to four 2-bit inputs.

Operations on data wider than 2 bits can be accomplished by adjoining logic blocks along

a row (Figure 4.3). Construction of multi-bit adders, shifters, and other major functions is

aided by hardware invoked through a few different logic block modes.
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Figure 4.5: Simple table-lookup function for a logic block.

Figure 4.4 provides the basic diagram of a logic block. Four 2-bit inputs (A, B,

C, D) are taken from adjacent wires and are used to derive two outputs. One output is

calculated (Z), and the other is a direct copy of an input (D). Each output value can be

optionally buffered in a register, after which the two 2-bit outputs can be driven onto wires

to other logic blocks. The logic block registers can also be read or written over the memory

buses. Often the D input is not needed for the logic block function, in which case the “D

path” can be used to copy a value from one wire to another.

There are three primary modes for the logic block function:

• Table mode implements a four-input bitwise logical function using table lookups (Fig-

ure 4.5). A single 16-bit lookup table is independently applied to the high and low

bits of A′, B′, C ′, and D′ to generate the high and low bits of the result; that is,

Z1 = f(A′

1, B
′

1, C
′

1, D
′

1) and Z0 = f(A′

0, B
′

0, C
′

0, D
′

0), where the function f is deter-

mined by the 16-bit lookup table. The effect is to perform an arbitrary logical function

bitwise on the four 2-bit inputs.

• Following the advice of Section 3.2.4, triple-add mode performs a three-input addition

(Figure 4.6). The values A′, B′, and C ′ are reduced by a carry-save adder to two

values which are then summed using a dedicated carry chain. To support fast 32-bit-

wide additions, each row includes a fast carry chain “box” spread across all the logic

blocks on a row, as depicted in Figure 4.7. A full-sized addition of three inputs can

be performed in one array clock cycle. Triple-add mode is flexible enough to permit
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Figure 4.8: Logic block select function. Because this mode needs five inputs, the extra Hout
above input comes directly from the logic block in the same column in the row above.

the negation of any of the inputs, so that an arbitrary sum or difference of the three

inputs can be calculated.

• Because it is not well supported by the other modes, a special select mode implements

a four-way multiplexor (Figure 4.8). This mode needs an extra fifth input, which it

takes directly from the logic block in the same column in the row above.

All of the function modes include permutation boxes that can shift or permutate

the inputs. The crossbars in table mode can perform an arbitrary permutation on the two

bits of each input, while the shift/invert boxes in the other two modes can shift an input

left one bit across a row and optionally complement it logically. The permutation boxes are

essential since without them there would be almost no opportunity for the low and high

bits of the 2-bit values to ever cross paths. (Interestingly, Cherepacha and Lewis adopted

a similar feature with their 4-bit-granularity array [14].)

Each of the function modes already listed has a cousin that is a variation on the

same theme:

• Split table mode is similar to table mode, but uses two separate three-input lookup

tables to determine the high and low bits of the result. The D input is ignored.
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Figure 4.9: The wire channels that can be input and output by a logic block. Logic
blocks can read from the horizontal wires above them and can read from and output to
the horizontal wires below. Exactly one vertical channel is associated with each column of
logic blocks.

• Carry chain mode dispenses with the carry-save addition of triple-add mode. All three

inputs, A, B, and C, participate in the table lookups that determine the propagate

and generate controls for the carry chain.

• Partial select mode is a variant of select mode useful in selecting partial products for

multiplications.

4.1.3 Array wires

Vertical and horizontal wires exist within the array for moving data between logic

blocks. As the array has 2-bit granularity, all array wires are grouped into pairs to carry

2-bit quantities. Each pair of wires can be driven by only a single logic block but can be read

simultaneously by all the logic blocks spanned by the wires. The wire network is passive, in

that a value cannot jump from one wire to another without passing through a logic block.

Figure 4.9 shows the wire channels that can be input and output by a logic block.

Figure 4.10 illustrates the pattern of vertical wires (V wires) in a single column

of 32 rows. By configuring the vertical wires in concert, multi-bit values are easily moved

among array rows. Each wire pair can be driven by any one of the logic blocks it spans,

and can be read by all of the logic blocks spanned.

Unlike the vertical wires, which are always associated with only a single column

of blocks, horizontal wires exist between rows, and are accessible by logic blocks in the rows
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Figure 4.10: The pattern of vertical wires (V wires) in a single column of 32 rows. Each
line drawn actually represents a pair of wires (2 bits).
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Figure 4.11: The horizontal wires (H wires and G wires) between two rows. Again, each
line represents a pair of wires (2 bits).

both above and below the wires, as seen in Figure 4.11. There is a full set of pairs spanning

11 blocks (H wires), and 4 pairs of wires spanning the entire width of the array (G wires).

Although horizontal wires can be read from blocks both above and below the wires, they

can only be driven from the row above. The horizontal wires can be used to communicate

among the columns of a single row, or from a logic block in one row to a different column

in the row immediately below.

The horizontal and vertical wires have different patterns because they are opti-

mized for different purposes. The shorter horizontal wires are tailored to multi-bit shifts

across a row, while the vertical wires are oriented towards connecting functional units laid

out horizontally. The long horizontal wires are typically used to broadcast control signals

to all the logic blocks implementing a single multi-bit operation.

The driver of every wire is fixed by a configuration and cannot be changed without

loading a new configuration. As discussed in Section 3.1.3, configurations are checked by

the hardware when loaded to ensure that no wire has more than one driver. Configurations

failing this test cannot be loaded.

4.1.4 Array timing

Delays within the Garp array are defined in terms of the sequences that can be fit

within an array clock cycle. Only three sequences are permitted:
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• short wire, simple function, short wire, simple function;

• long wire, any function not using the carry chain; or

• short wire, any function.

Any other sequence must be assumed to require multiple clock cycles. The short wires

include all the shorter horizontal wires, plus vertical wires less than a certain length. A

simple function is either a direct table lookup or a traversal of the independent “D path”

in a logic block (Figure 4.4). At the end of a cycle, a computed value may be latched in a

logic block register without affecting the timing.

Quantitizing time with a simple set of rules makes it easy to determine the number

of clock cycles a computation will need. From an implementor’s perspective, the rules

delineate what is required of an implementation in order to run valid configurations correctly,

thus facilitating the development of a family of implementations executing bit-identical

configurations.

4.1.5 Support for computational primitives

As the Garp array has been designed expressly for computation, Table 4.1 lists

the areas and speeds of various computational primitives configured in the array. Area is

counted in array rows, and speed is given both as latency and turnaround time in array clock

cycles. Note that multiplies and divides by small constants are especially dense because

they can be configured as hard-wired shifts and adds using the horizontal wires between

rows and triple-add mode.

Most of the operations in the table are for data 32 bits in size, because that is

the most convenient data size for a full row. All of the operations are easily reduced to

smaller sizes, of course, using less than the full width of the array rows. By design, the Garp

array permits most of the simpler operations to be done without the need for any “extra”

logic blocks to the left or right of the data width. This means, for example, that an 8-bit

comparison will fit neatly within four logic blocks of a row, two bit positions per logic block

(the array having 2-bit granularity, recall). This fact becomes significant because 32-bit

words are read from and written to memory within exactly the middle 16 columns of the

array (Section 4.1.1 and Figure 4.2). Should those 32 bits contain four 8-bit characters,
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turn-
latency around

operation rows cycles cycles

32-bit sum A±B ± C 1 1 1
32-bit comparison (=, 6=, <, ≤, signed or unsigned) 1 1 1
32-bit fixed shift by up to 16 bits (logical or arithmetic) 1+ 1 1
32-bit fixed shift, any distance (logical or arithmetic) 1+ 1 1
32-bit variable shift (left or right, logical or arithmetic) 3+ 3+ 1
multiply, 32 bits× 5-bit constant→ 32 bits 1+ 1+ 1
multiply, 32 bits× 8-bit constant→ 32 bits 2+ 2+ 1
multiply, 32 bits× 16-bit constant→ 32 bits 4+ 3+ 1
multiply, unsigned 16 bits× 16 bits→ 32 bits 4 7 4
multiply, unsigned 16 bits× 16 bits→ 32 bits 9 5 1
integer divide, unsigned 32 bits÷ 4-bit constant 4+ 4+ 1
integer divide, signed 32 bits÷ 4-bit constant 5 6 1
arbitrary table-lookup function, 3-bit index→ 32 bits 1 1 1
arbitrary table-lookup function, 4-bit index→ 32 bits 3 2 1
arbitrary table-lookup function, 5-bit index→ 32 bits 5 2 1
32-bit four-input multiplexor (conditional operator) 1 1 1

Table 4.1: Examples of primitive operations implemented in Garp’s reconfigurable array.
Latency is the time from when inputs are supplied to when the result is ready, whereas
turnaround measures how soon the implementation can accept another set of inputs for
pipelined operation. A plus sign in the rows column indicates that the implementation
depends on the row immediately above to drive its H wires with one of the operands to
the operation. If the row immediately above cannot do this, the implementation needs an
additional row for this purpose, and may also take an additional cycle as marked in the
latency column.

horizontal split partial triple- carry
wires table select select add chain

operation type H G mode mode mode mode mode

additions and subtractions Y or Y
equality comparisons (=, 6=) Y
ordered comparisons (<, ≤) Y or Y
fixed shifts Y
variable shifts Y Y Y
constant multiplications Y Y
general multiplications Y Y Y Y Y
constant divisions (unsigned) Y Y
table-lookup functions Y Y Y
multiplexors Y Y

Table 4.2: Array features employed by various operations. At each grid point, a Y indicates
that the given operation type makes significant use of the listed mode or wire class.
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parallel 8-bit operations can be done directly within each set of four columns without the

individual characters having to be shifted apart slightly to make room for extra logic blocks.

Table 4.2 tells how the different logic block functions and two different types of

horizontal wires are used by various operations. Garp has six function modes in total;

ordinary table mode which implements bitwise logical operations is not listed. For its part,

control logic tends to use table mode and split table mode almost exclusively.

4.1.6 Processor control of array execution

The main processor has a number of instructions for controlling the array. The

most important are listed in Table 4.3. These include instructions for loading configurations,

for copying data between the array and the processor registers, for manipulating the array

clock counter, and for saving and restoring array state on context switches. Loading a

configuration also initializes all the data registers in the array to zero by default.

As mentioned earlier, an array clock counter controls array execution. When the

counter is nonzero the array is executing, and when it is zero the array is halted. To avoid

restricting the main processor implementation, the Garp architecture does not specify how

many main processor instructions might execute during each array clock cycle. Instead, to

keep processor and array synchronized, many of the new processor instructions (Table 4.3)

first wait for the clock counter to reach zero before performing their function. The simplest

example is when the main processor needs to read the result of a computation performed

by the array. After setting the array clock counter to the proper value, the processor can

execute a mfga instruction at any time. As long as the array is not yet done, mfga will

wait for the clock counter to become zero before attempting to copy the result over to the

processor.

The mtga and mfga instructions copy to and from the middle 16 logic blocks of

a row (recall Figure 4.2.) Additional instructions (not listed) give the processor access to

data in the logic blocks at the edges of the array. Several instructions such as gasave and

garestore exist primarily to support context switches.

4.1.7 Configurations

Each block in Garp’s array requires 64 configuration bits (8 bytes) to specify

the sources of inputs, the function of the block, and any wires driven with outputs. No



74

instruction interlock description

gaconf reg yes Load (or switch to) the configuration at ad-
dress given by reg and zero all array registers.

mtga reg, array-row-reg, count yes Copy reg value to array-row-reg and set array
clock counter to count.

mfga reg, array-row-reg, count yes Copy array-row-reg value to reg and set array
clock counter to count.

gabump reg no Increase array clock counter by value in reg.

gastop reg no Copy array clock counter to reg and stop array
by zeroing clock counter.

gacinv reg no Invalidate cache copy of configuration at ad-
dress given by reg.

cfga reg, array-control-reg no Copy value of array-control-reg to reg.

gasave reg yes Save internal array state to memory at ad-
dress given by reg.

garestore reg yes Restore previously saved internal state from
memory at address given by reg.

Table 4.3: Basic processor instructions for controlling the reconfigurable array. The interlock
column indicates whether the instruction first stalls waiting for the array clock counter to
run down to zero. (Instructions can be interrupted while stalled.) The last three instructions
are intended for context switches.
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configuration bits are needed for the array wires, so a configuration of 32 rows requires

exactly 8 × 24 × 32 = 6144 bytes. Assuming a 128-bit path to external memory, loading a

full 32-row configuration takes 384 sequential memory accesses. A typical processor external

bus might need 50 µs to complete the load.

Since not all useful configurations will require the entire resources of the array,

partial array configurations are allowed. The smallest configuration is one row, and every

configuration must fill exactly some number of contiguous rows. When a configuration is

loaded that uses less than the entire array, the rows that are unused are automatically made

inactive.

A cache of recently used configurations may be distributed within the array, similar

to an ordinary instruction cache. The size of this cache is implementation-dependent. A

reasonable Garp might have a 4-deep cache at every logic block—sufficient to hold four 32-

row configurations, or sixteen 8-row configurations, or any other combination of the same

size.

To maximize cache utilization as discussed in Section 3.1.4, partial configurations

are not necessarily loaded at the first physical row of the array. The hardware translates row

numbers so that programs see all configurations as starting at logical row 0. Exactly where

partial configurations can be placed in the array is dependent on the pattern of vertical

wires (Figure 4.10). The vertical wires in Garp follow a repeated, recursive pattern so that

partial configurations can be loaded at various offsets.

Two Garp configurations can never be active at the same time, no matter how

many array rows might be left unused by a small configuration. This is analogous to there

being only one thread of control—only one program counter—in the main processor. If

two independently-written configurations could be active simultaneously, there is no way

to guarantee they would not interfere with each other’s use of the wires. If a program has

a special need for making more than one configuration active at a time, it can easily load

one larger configuration containing both the smaller ones.

Configurations are loaded in whole from memory. They cannot be edited within

the array or written back to memory. Once a configuration has been loaded into the array,

its copy in memory must not be modified until the main processor has explicitly purged it

from the configuration cache using the gacinv instruction (Table 4.3).
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4.1.8 Array access to memory

To maximize bandwidth to memory (Section 3.1.6), memory accesses can be ini-

tiated in the array without direct processor intervention. These memory accesses proceed

in two phases: the first phase is the memory access request, and the second is the data

transfer. For stores, the two phases occur on the same array cycle. For loads, the memory

request necessarily precedes the data transfer. With some restrictions, the two phases can

be pipelined so that a new memory access can be initiated every cycle.

Array memory accesses are controlled by the control blocks at the edge of the

array. Parallel to the memory buses, an address bus also runs vertically through the rows.

Control signals requesting memory accesses can be generated in the array logic blocks and

forwarded by the control blocks to the memory system. A memory address is then read

over the address bus from the registers of the row that just initiated the accesses. The data

is transferred over a memory bus to/from another selected row, which is often a different

row than the one that supplied the address. Up to four contiguous 32-bit words can be read

or written with one request over the four memory buses.

The array sees the same memory hierarchy as the main processor. Misses in the

on-chip data cache cause array execution to be stalled while the data is fetched from external

memory. To reduce cache misses, the array can perform prefetching accesses that merely

load the on-chip data cache. Page faults due to array memory accesses are also possible

and cause the faulting process to be suspended while the page fault is serviced.

Many commercial FPGAs intersperse blocks of memory within the reconfigurable

hardware or permit logic block lookup tables to be transformed into small memories. In

contrast, the amount of data state in Garp is intentionally kept down—only four bits in each

logic block—to help limit the time needed for context switches. The existing on-chip data

cache provides ample temporary storage, although the limited bandwidth of the memory

buses can certainly be a bottleneck.

Exploiting maximum parallelism in a program often entails executing memory

loads speculatively, that is, earlier than they appear in the original code and thus before

it is known for sure that they should have been executed. A speculative load that should

not have occurred might very well be at an invalid virtual address. The Garp hardware

supports speculative loads in that case by simply ignoring invalid virtual address exceptions

and returning arbitrary data as suggested in Section 3.1.8. Loads at valid virtual addresses
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cause a page fault as usual if the memory page is not resident; these are serviced in the

manner also described in Section 3.1.8.

4.1.9 Memory queues

In addition to the mechanism for demand accesses just described, the array has

available to it three memory queues for performing read-aheads and write-behinds on mul-

tiple data streams. Three streams are supported that can operate in either direction. All

three streams can be read/written in the same cycle, using three of the memory buses con-

currently. Memory queues are programmed by the main processor before a configuration

is executed. From the array’s perspective, queue accesses resemble other memory accesses,

except that the array does not provide the address. Read response is also usually faster

because the data is already waiting in the queue.

Given that the array can perform arbitrary memory accesses anyway, the behavior

of the queues could be implemented by part of a configuration within the array. However,

by providing dedicated hardware for this common task, more array resources are freed for

the actual kernel computation. Similar memory stream hardware has been considered for

standard processors by McKee et al. [55].

4.2 Contrast with other designs

Table 4.4 compares some of the features of Garp and a few other research de-

signs. The other designs considered—OneChip-98, RaPiD, and PipeRench—all have recon-

figurable coprocessors that do not operate on the main processor’s registers and can execute

for arbitrary numbers of clock cycles independently of the master processor. Like Garp,

RaPiD and PipeRench define their own reconfigurble hardware. Of the four, Garp is the

only one not limited exclusively to stream processing.

In the table, data-flow feedback refers to the reconfigurable hardware’s ability to

encode computations with feedback cycles. PipeRench’s virtualization of its reconfigurable

hardware (Section 2.5.3) limits its ability to support feedback: any feedback must all fit

within one stripe, which is PipeRench’s unit of virtualization. Transparent stalling for sync.

means the reconfigurable hardware will stall automatically and transparently as needed to

stay synchronized with external components such as the memory system. The OneChip-

98 authors fail to mention how their FPGA unit maintains synchronization, presumably
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Garp OneChip-98 RaPiD PipeRench
feature [38] [15, 18, 19] [10, 22, 23]

granularity 2 b 1 b 1 b, 16 b ≈ 8 b
data-flow feedback allowed yes yes yes limited
configuration preloading no yes no? no
fast configuration cache yes yes no? yes
preemptable (for multitasking) yes no no? no?
transparent stalling for sync. yes no? yes yes
arbitrary memory accesses yes no no no
no. of streams from/to memory 3 1/1 3 4?
virtual hardware (over streams) no no no yes
data-dependent loop exits yes no yes no

Table 4.4: Comparison of Garp with other research designs.

putting the onus on each configuration.

As alluded to in Section 2.5.3, OneChip-98 also puts severe restrictions on the sizes

and alignments of its memory streams in order to more easily implement a novel scheme for

memory interlocking. Streams must be a power-of-two in size and aligned on a corresponding

power-of-two address, generally impeding the utility of the OneChip-98 reconfigurable unit.

Moreover, with only one input and one output stream, OneChip-98 is unable to execute

even a simple vector addition or to mix two audio signals. The other designs all support

at least three arbitrary streams (apparently all in either direction), which in Garp can be

further supplemented without limit by additional demand memory accesses. PipeRench can

operate on streams with non-unit stride, but cannot perform arbitrary memory accesses on

demand as Garp can.

With data-dependent loop exits, the number of loop iterations (or lengths of streams)

does not have to be known in advance but can depend on the data read. On this point

the four systems are evenly split, two for, two against. However, in their experience with

PRISM-II, Agarwal et al. found data-dependent exits to be valuable [2], and Garp supports

them with the ability of the array to zero the array clock counter itself.

Besides the three systems in the table, Garp’s array has superficial similarities to

the earlier Dynamic Instruction Set Computer (DISC and DISC-II) [78, 79]. The division

of the array into rows to simplify array management is a technique that was first reported

for DISC. Garp also resembles DISC in the way that multi-bit operations are naturally

oriented across rows, and that global buses run orthogonally through the rows for bringing
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values into and out of the array. DISC can further be said to have a configuration cache,

although only one plane deep. Just like Garp, DISC can hold multiple configurations (less

than full size) in its one plane. If a configuration is needed that is not in the cache, a fault

occurs that is serviced in software by DISC’s host processor, whereas Garp services such

misses in hardware.

Although apparently not supported by the other systems in Table 4.4, Garp is not

entirely unique in being preemptable. The Xilinx 6200 (first mentioned in Section 3.1.3)

was capable of it, albeit with some complications. Setting aside the question of in-progress

memory accesses, the necessary support consisted mainly of the ability to suspend the FPGA

clock and to read/write all of the data state from outside the chip. Haug and Rosenstiel

have reported on a system using the 6200 as an external accelerator that is time-shared

along with the rest of the system [33, 34].

4.3 Implementation study

As the Garp architecture has never been implemented and tested physically, it

is necessary to question how effectively it could be realized in standard VLSI. Our main

interest is to assign estimates for chip area, speed, and power consumption, so that the

Garp architecture can be more faithfully measured against a contemporary processor in

Chapter 5.

To make the matter more concrete, a specific VLSI process technology has been

assumed: 0.65 µm transistor gate length, three layers of metal, operating at 3.3 V, and

with layout conforming to standard MOSIS scalable CMOS design rules (submicron “tight

metal”). Although not state-of-the-art, this process technology was the best available

through MOSIS when the project began, corresponding approximately with an early In-

tel Pentium Pro, a MIPS R4200, or an original Alpha 21064. In Chapter 5, the results from

this study are extrapolated to the slightly better 0.5 µm process of an UltraSPARC 1. The

implementation of Garp has been restricted to a realistic die area and power budget, taking

into account this intended “shrink” from 0.65 µm to 0.5 µm.

4.3.1 Overall functional organization

Since the Garp architecture connects the reconfigurable array to the traditional

MIPS processor through a simple coprocessor interface, there are relatively few points of
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contact between the processor and the array. The following features are needed:

• A connection to the processor’s register read and write ports is necessary to support

the movement of individual 32-bit words between registers and the array by Garp’s

mtga and mfga instructions. Traditional MIPS coprocessor interfaces have always

supported equivalent move-to-coprocessor and move-from-coprocessor instructions, so

this feature is nothing new.

• The array must have access to the primary (L1) data cache. Assuming the cache is

not made dual-ported, the only real complication is the need to arbitrate between the

processor and the array if both attempt to access the cache at the same time. However,

a simple policy should suffice, such as always giving preference to the processor when

there is a conflict. (Note that if it were the reverse and the array always had preference,

a steady stream of array memory accesses might ultimately prevent the processor from

exercising control over the array.)

• Configuration loading should bypass the primary data cache, or the cache would

be swamped whenever a new configuration was loaded into the array. Like most

processors, MIPS loads instructions into a separate instruction cache, bypassing the

L1 data cache, so routing configuration loads around the L1 data cache in the same

way should not pose a significant burden.

• The array needs the option to prefetch from main memory into the data cache, and

also to perform a memory access without cache allocation should the access miss in

the cache. These options are not strictly necessary, but have been defined in the Garp

architecture for performance reasons. Many commercially successful processors give

software the same control over the caching of memory accesses.

• Some of Garp’s new processor instructions must interlock (stall) processor execution

if the array clock counter is nonzero. Since an instruction could be stalled on the clock

counter indefinitely, the stall must be interruptible. However, the stall condition does

not need to be remembered on a context switch so long as the stalled instruction gets

reexecuted when the context is resumed.

None of these features requires any truly novel mechanisms, and together they would not

be expected to add much to the cost of the processor. This leaves questions about the

feasibility of implementing Garp focused squarely on the array itself.
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Figure 4.12: The four main parts needed to implement the complete Garp array. (Scale is
only approximate.)

As Figure 4.12 illustrates, the hardware of the array can be divided into four main

parts: (1) the core array of logic blocks, the largest part, (2) a control section incorporating

the control blocks at the left edge of the array, (3) a memory interface, presumably adjacent

to one of the edges either above or below the array, and (4) the tags for managing the

configuration cache distributed within the array core. The control section is naturally

the nexus for control signals entering and exiting the array core and also the place to

coordinate control among the control blocks. The cache tags not only should keep track of

which configurations are where in the cache but should also be responsible for choosing a

configuration to evict when space is needed.

The most complex part outside of the array core is the memory interface, which

among other things includes the memory queues, an alignment network, and control cir-

cuitry for tracking multiple memory accesses in progress. The memory interface is directly

responsible for the memory buses that run through the array. In addition to the mem-

ory accesses initiated by the array itself, the memory interface must be involved in data

transfers initiated by the processor (mtga and mfga) and in the loading of configurations

from memory. The memory interface must also be responsible for checking the validity of a

configuration while it is being loaded. If a configuration has more than one driver for any

wire, it must be rejected. Since configurations cannot be edited in the cache, a configuration

made active directly from the cache does not need to be checked again.

The local horizontal wires (H wires) on each row do not require checking because

by design they always have exactly one driver in any configuration. The global horizontal

wires (G wires) must be checked, but these can be tested in full as each row’s configuration

is brought in. However, in the case of the vertical wires, the information needed is spread
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control
section logic blocks

Figure 4.13: Broadcasting control signals across a row from the control block at the end.

across multiple configuration rows, one block per row. Assuming configurations are read

from memory in contiguous order, one full row at a time, some status for each vertical wire

must be maintained in the memory interface and updated as each row of the configuration

is read. The status required is not great, amounting to only a single bit per wire to indicate

whether a driver for that wire has yet been seen. Not all vertical wires span the entire

height of the array; once a shorter vertical wire has been entirely validated, its status bit

can be reclaimed for checking the next wire below it. The regular pattern of wire breaks,

seen in Figure 4.10 and explained further in the architecture manual in Appendix A, makes

it straightforward to construct a state machine to handle the breaks.

Unlike the network wires, the memory buses are used dynamically and so cannot

simply be checked for driver conflicts at load time. Array memory accesses are initiated by

the control blocks in the array; to guard against multiple rows driving a memory bus at

the same time, the control section must check at run-time for such cases and abort array

execution of the offending configuration. The main processor can be notified via an ordinary

processor interrupt.

Control signals affecting the array core almost always apply to rows of logic blocks

as units, not individual logic blocks or columns of blocks. Thus it makes sense to broadcast

most control signals across each row from the row’s control block at the end of the row, as

suggested in Figure 4.13. Examples of control signals for a row would include: an enable

for whether the row is currently active; wires that manipulate the configuration cache and

select an active configuration from the cache; and signals for loading logic block registers

from one of the memory buses or for driving a set of register values onto one of the buses.

As far as these control features are concerned, Garp’s logic blocks are almost completely

passive, merely responding to the direct manipulation of the control blocks. Very little

clocking, in fact, is needed within the array core itself beyond the architecturally visible

logic block registers, which are latched every clock cycle when the array is executing.
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Figure 4.14: Routing a signal with pass transistors. Because the maximum voltage that can
traverse a pass transistor is a threshold voltage drop below the voltage on the transistor gate,
the transmitted signal has a lower voltage swing than the control signals on the transistor
gates. The H ’s in this and subsequent figures indicate a higher voltage on the gates than the
signal passing through the transistor. For best efficiency, the signal is regularly regenerated
by inverting buffers operating entirely at the lower data voltage.

4.3.2 Using pass transistors for switching

Much of a reconfigurable device is concerned with simply routing data through

configuration-controlled switches, both between logic blocks and within them. The switches

support the large number of possible signal paths that give the reconfigurable device its

flexibility, but they also slow down signal propagation without performing any obvious

computation. In VLSI, the very simplest type of switch is a single pass transistor, where

the voltage on the gate controls whether the path between the source and drain is open or

closed (Figure 4.14). In some case, the gate might be controlled directly by a configuration

bit, resulting in a highly compact implementation.

Unfortunately, while a single N-type transistor can pass a zero-volt signal cleanly,

it cannot pass a signal at the full source voltage, only a reduced voltage (specifically, a

transistor threshold-voltage drop from the source voltage). This means that the signal on

the downstream side of a pass transistor has a reduced voltage swing, ranging between

zero volts and something rather less than the full source voltage. The reduced voltage

is weaker—and thus slower—at driving subsequent transistor gates than the higher source

voltage would be. Nevertheless, when a few switches are combined in sequence, the weakness

of the reduced-swing signal at the output is made up for by the speed at which the signal

traverses the simple pass transistors, and by the smaller area of the switches compared to

the alternatives.

The advantage of pass transistors dies out after about four or five in series, due to

their combined impedance (RC delay). For best results, the signal has to be restored with

a buffer (preferably an inverter) about every four pass transistors, as shown in Figure 4.14.

Since the input to the buffer has reduced swing, and since there is no harm in making
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the output reduced-swing too, the buffer is most efficient if operated entirely at the lower

voltage of the reduced-swing signal. This leads eventually to a dual-voltage design, where

the high (full) voltage is generally associated with the configuration, and a reduced voltage

is used for the active data signals.

This dual-voltage design might not be viable at the lower operating voltages ex-

pected in the future; that depends on whether transistor threshold voltages will be effectively

scaled down along with operating voltages, a question still being researched. However, the

technique does work for the 3.3-V technology being assumed; and considering that com-

mercial FPGAs have been built this way, it has seemed fair to adopt the method for the

hypothetical Garp implementation. In circuit diagrams where both voltages appear, full-

swing signals will usually be distinguished with an H for their higher voltage; other signals

in the same figure are low-swing by default.

4.3.3 Array wires

As with other reconfigurable devices, the wire network connecting the logic blocks

is a large part of the Garp array. The Garp architecture stipulates that network wires

are broadcasting: every logic block adjacent to a wire can sense the signal on that wire.

The V (vertical) wires and the G (global horizontal) wires can also be driven by any of

the logic blocks adjacent to or above the wire. Thus, a single V wire is defined logically

as illustrated in Figure 4.15, with each adjacent logic block able to drive and/or sense the

wire. The actual physical implementation of the wire does not have to mimic this logical

view. Nevertheless, for shorter wires spanning only a few logic blocks, the simple circuit

with the wire as a common node is already fairly efficient both in area and speed. The

complications of longer wires will be discussed shortly.

Figure 4.15 shows a single wire; the wire channels between blocks contain many

such wires, of course. A single logic block’s view of the vertical wire channel is that of

Figure 4.16. The Garp logic block has four inputs, A, B, C, and D, each of which can

connect to any wire in the channel. Each input thus has an associated multiplexor to

choose one of the wires for that input. (This is just for the vertical wires in the vertical wire

channel. A similar story applies to the horizontal wires above and below the logic block,

as well.) To reduce the combined loading of multiple logic blocks on the wires, each block

should buffer the wires through small inverters before passing the signals to its four input
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Figure 4.15: Physical implementation of a wire matching the Garp architecture’s logical
definition.
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Figure 4.16: The input multiplexors and output drivers underneath the vertical wire channel
at a logic block. To minimize loading on the network wires, inputs are multiplexed from a
locally buffered copy of the wires. All data values are actually 2 bits in size though shown
as single lines.
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Figure 4.17: A single input multiplexor implemented as a binary tree of pass transistors.
Again, the data values being multiplexed are really 2 bits wide.
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multiplexors.

For the best speed in the smallest area, the input multiplexors can be constructed

as a binary tree of pass transistors as shown in Figure 4.17. There are other ways to build

multiplexors, but the pass transistor tree is actually one of the fastest. Buffers are needed

within the tree to refresh the signal, but by then the tree has been reduced to only a few

branches and the buffers are a small proportion of the total area.

At the output side, the logic block may drive one of the 2-bit wire pairs in the

channel with an output value. To accomplish this, a battery of tri-state drivers can be

connected to the wires in the channel, and a small decoder used to select one of them (or

none) according to the destination encoded in the configuration (Figure 4.16). Assuming a

little settling time can be tolerated during configuration changes, the output decoder does

not need to be fast and consequently can be made quite small. As will be seen later, the

area taken up by the decoder is actually dwarfed by the tri-state drivers themselves, which

must be sizable to overcome the loading and resistance of the wires.

A fundamental reality that must be contended with is that each wire is connected

to the tri-state drivers of multiple logic blocks, only one of which actually drives the wire.

The active driver thus has to overcome the capacitance of all its kin. On the one hand, the

drivers could be made stronger by making them larger; but on the other, that multiplies the

loading along the entire wire, making the drivers’ jobs harder. One advantage the tri-state

drivers have in this context is that a typical tri-state driver is designed to respond quickly

to changes in both the data input and the enable control signal. For the logic block output

drivers, however, the enable signal only changes when the configuration changes, so enable

response time can be sacrificed to improve other parameters.

Figures 4.18 and 4.19 show two common styles of tri-state drivers, both of which

are troublesome for this application. In both circuits, components that affect only select

response time have been drawn smaller than the other elements to indicate they can be built

with transistors of minimal size. The trouble with the driver in Figure 4.18 is that it puts

two transistors in series on both the pull-up and pull-down sides, forcing the transistors

to be doubly large to achieve the same power, therefore unnecessarily compounding the

wire capacitance problem. The other, in Figure 4.19, is better in that it has only a single

transistor for the final pull-up and pull-down, but it also needs ten transistors, six of which

cannot be a trivial size.

Figure 4.20(a) has a third alternative that is a better choice than the other two.
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out wire

select

Figure 4.18: A common style of tri-state
driver with four transistors in series. The
pairing of pull-up and pull-down transistors
means the transistors have to be twice as
large as those of a simple inverter to achieve
the same speed.

out wire

select

Figure 4.19: Another common tri-state
driver circuit with only two final transistors
in series. The two final transistors do not
need to be as large as those of Figure 4.18,
but now there are six non-minimal transis-
tors and the signal is inverted twice.

This circuit depends on the higher voltage of the select configuration line, using pass tran-

sistors again to achieve the fewest number of transistors between out and the wire. Since

Garp always drives pairs of bits in tandem, the small inverter can be shared between the

pair of drivers, as seen in Figure 4.20(b). This circuit can be layed out neatly underneath

the vertical wire channel as illustrated in Figure 4.21, dedicating nearly half the area just

to the crucial pull-up and pull-down transistors. With the out lines for all the drivers in the

logic block tied together (Figure 4.16), this circuit is not the fastest, but it is an excellent

compromise between speed and area for the purpose.

Garp’s longest wires run the length of the array, which at 32 rows is too long for

the simple circuit of Figure 4.15 to work effectively. The combined capacitance of 32 output

drivers on a wire is too much for any driver of reasonable size to overcome. The solution

is to install configurable buffers between shorter segments, as illustrated in Figure 4.22. If

each segment is eight blocks long, the longest wires contain three such buffers. The buffers

need to be fairly hefty, but they ultimately save power by sharpening the rise and fall times

of signals on the wire. The global horizontal wires (G wires) in the other dimension are

24 blocks long and thus have two buffers. With the insertion of the inter-wire buffers, the
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Figure 4.20: (a) A tri-state driver circuit
with only four nonminimal transistors and
only two final transistors in series, mak-
ing use of a higher control voltage for the
select line. (Compare with Figures 4.18
and 4.19.) (b) The same driver doubled
for transmitting two bits in parallel.

Figure 4.21: Layout underneath the verti-
cal wires for driver circuit in Figure 4.20(b).
The small select inverter is at the top.
About half the area is consumed by the fi-
nal pull-up and pull-down transistors.
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Figure 4.22: Breaking the longer wires
into pieces eight logic blocks long joined
by configurable buffers.

8×8 logic
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buffers for global horizontal wires
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Figure 4.23: The array core as a 4× 3 quilt of
patches 8 × 8 logic blocks each. Between the
patches reside the buffers for the longer wires.
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array core layout becomes a 4× 3 quilt of 8× 8 logic-block patches, with the space between

patches allocated to buffers, as in Figure 4.23.

The direction of each inter-wire buffer must be set to match the current configura-

tion, even though the actual encoding of configurations defined by the architecture knows

nothing of the buffers. Fortunately, since the array memory interface already must col-

lect information about wire drivers to guard against multiple drivers on the same wire,

it can easily use the same information to set the inter-wire buffers. As a configuration is

loaded from memory, the array memory interface expands the configuration to include the

wire buffer settings at the same time that it checks for driver violations. The interpolated

configuration bits are then loaded into the physical array and managed the same as the

others. The existence and operation of the inter-wire buffers can thus be made completely

transparent to all Garp software.

4.3.4 Configuration cache management

The Garp design supports a configuration cache distributed within the core array.

Until the need for more has been proved, it can be supposed a small number of cache

planes will be enough to start with, something in the range of four to eight. For the Garp

implementation, four cache planes have been assumed, with the understanding that this

number could be doubled to eight without much difficulty if needed.

As mentioned in Section 3.1.4, the physical wire pattern in the array limits the

locations at which an arbitrary configuration can be blindly loaded and executed. The

pattern of vertical wires adopted for Garp (Figure 4.10) has a power-of-two recursion that

permits a configuration of, for example, eight rows to work at any offset that is a multiple

of eight. Configurations of five, six, or seven rows must be rounded up to the next power

of two and located on a multiple-of-eight boundary. This does not mean, however, that a

non-power-of-two configuration consumes the extra rows. Although an 11-row configuration

must be placed starting at a 16-row boundary, rows after the 11th are free to hold a smaller

configuration that will fit, such as a 4-row configuration beginning at the 12th row.

The power-of-two hierarchy suggests a version of the buddy system, a technique

for allocating storage described by numerous sources including Knuth [43]. To reduce the

work associated with allocating array space, the smallest unit of allocation will be four

rows. The maximum number of one-row configurations a cache plane can store is therefore
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32 ÷ 4 = 8, even though it would be possible to fit 32 one-row configurations into a single

cache plane. It is expected very few useful configurations will be as small as four rows

(let alone one row), so there is little need to carry the buddy system hierarchy all the way

down to individual rows. Limiting the minimum allocation to four rows cuts the maximum

number of loaded configurations, and thus the size of the cache management hardware, by

a factor of four.

4.3.5 Logic block layout

To estimate the VLSI area needed to implement Garp, a promising logic block

organization was floor-planned and then layout was completed for the most critical com-

ponents, those thought to have the greatest influence on logic block size. Although the

lookup tables can be considered the logical heart of each logic block, the hardware to per-

form the lookups represents only a small portion of a logic block’s total area. To see why,

consider that the two lookup tables in a Garp logic block each use 8 configuration inputs

to reduce 6 input data bits to 2 output bits. Together that makes 16 configuration bits

and 6 input bits, generating 4 output bits. The input multiplexors, in contrast, require

24 configuration bits to reduce 86 adjacent wires down to 8 bits of inputs to the logic block

datapath. The differences in the numbers illustrate clearly how the input multiplexors will

dwarf the lookup table hardware in size. On the output side, 26 bits worth of drivers are

needed on the vertical wires, each fairly large as seen in Figure 4.21. Moreover, the logic

block must find a place to store not only the 64 bits of active configuration but also four

planes of configuration cache, for a grand total of 256 bits. Any missteps that prevent these

three parts—the input multiplexors, output drivers, and configuration storage—from being

ultra-dense will have visible impact on the size of the entire array core.

Figure 4.24 shows how an individual logic block might be organized. The logic

block is framed by the horizontal wires above and below it and by the memory buses on

each side (not shown on the left side). Underneath the network wires are the twelve input

multiplexors leading to the four principal 2-bit inputs, and also the output drivers for the

vertical wires and the horizontal wires below the block. The inner logic block datapath

sits to one side, handing its two 2-bit outputs back to the output drivers and/or into the

box below containing the data registers, which also have a connection to the memory buses

for external reading and writing. Straddling everything on both sides is the configuration
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Figure 4.24: Proposed layout organization for a logic block (not exactly to scale.) The grey
paths carry configuration control bits from the configuration storage to the rest of the logic
block.
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storage, which accomodates the configuration cache and conveys the active configuration

onto a web encircling the other parts (represented in grey in the figures).

Figure 4.24 is not exactly to scale but is intended to be approximate. The config-

uration storage is as small as it is only because dynamic memory is assumed for the cache.

More about the storage and distribution of configuration bits will be covered in the next

section.

Most logic blocks have identical neighbors on all four sides, so the logic block

layout must tile in two dimensions. Figure 4.25 gives the outline of the tile and shows

how the pattern repeats. Note that logic blocks above and below a horizontal wire channel

must share the channel between them, whereas there is very little sharing contact between

neighbors side-to-side since a vertical wire channel is confined to a single column of logic

blocks.

In addition to the network wires and memory buses, the logic blocks have to be

reached by power and ground, a clock signal, control signals from the row’s control block,

and the carry chain and shifts that connect to neighboring logic blocks on a row. Figure 4.26

shows how everything is designed to be weaved through in three layers of metal. The extra

connections are all brought in across the row in the third metal layer (M3) between the

two horizontal wire channels. Meanwhile, the network wires are made to bob up and down

between the second and third metal layers. Unfortunately, this gives the network wires two

metal layer transitions to traverse per logic block. The wires would be faster without the

extra resistance of the vias, but it cannot be helped. On the other hand, the fact that

the memory buses are not burdened with these vias will make them a little faster than the

vertical wires, which is a plus.

As said earlier, key parts of the logic block design were actually layed out—

principally the input multiplexors, vertical output drivers, table lookups, and the dynamic

storage and active registers in the configuration storage blocks. All of these have been

brought together into an image of a logic block tile in Figure 4.27, which also shows the

space reserved for the remaining parts. The correlation between this image and previous

diagrams should be clear. The third metal layer has been removed from the figure to prevent

it from obscuring everything.

One thing to note in the figure is how the table lookups are indeed dwarfed by the

input multiplexors and output drivers as expected. The rest of the large unfilled area for the

logic block datapath is reserved for implementing all the extra functionality within Garp’s
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Figure 4.27: The relative space assumed for various logic block parts, based on detailed
layout for the main density-sensitive components.
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logic blocks such as the carry chain. The empty space within the configuration storage

boxes are for controlling reading and writing of the cache; only the raw storage cells are

mapped out in the figure. Lastly, the reason the horizontal output drivers have been given

less space than the vertical ones is that there are fewer options for selecting a horizontal

wire to drive. Only one of three H wire pairs can be driven by a logic block, and there are

only four G wire pairs to choose from. Details of the workings of the horizontal wires are

in the architecture manual in Appendix A.

According to the layout in Figure 4.27, the area corresponding to one logic block

is 1225 λ vertically and 1565 λ horizontally, where 1 λ is half the drawn transistor gate

length. For the 0.65 µm process, that equates to 0.40 mm by 0.51 mm, or a little more

than 0.20 mm2 per logic block, not counting additional components such as the memory

interface.

4.3.6 Configuration storage and distribution

Configurations are loaded over the memory buses, using the full bandwidth avail-

able. Connections to the memory bus are made inside the box labeled “registers and memory

bus contacts” in Figure 4.24 and lead in one direction to the data registers and in another

to configuration storage. Figure 4.28 illustrates the path between the memory bus contacts

and configuration storage. Configuration storage boxes of adjacent logic blocks sit back-to-

back, and the memory bus channel between them is used to load part of the configuration

for the block on the left and part for the block on the right.

Each memory bus channel is 8 bits wide (two bits for each of four memory buses),

so 8 bits are loaded at a time over the channel. With four configuration contexts to store,

the configuration cache is divided into pieces with four 8-bit bytes for the four contexts. As

a complete configuration for a logic block is 64 bits, eight of these byte-wide pieces make

up a complete cache for one logic block. Like any instruction cache, the configuration cache

blocks are unidirectional: configuration bits enter from one side (from the memory bus) and

exit out the other (toward the logic block).

The Garp implementation uses a standard 3-transistor dynamic cell for each cache

bit. Figure 4.29 shows the design of a single bit-line from the cache, which is optimized

primarily for size since quick access to a configuration is not a priority. At the output side is

the active configuration register that drives the configuration bit into the logic block. The
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Figure 4.29: One bit-line in the configuration storage. With only four dynamic storage cells
and no need for speed, sophisticated sense amp circuitry would be overkill.
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cache control lines in the figure are intended to be governed by a minimalist, passive state

machine that is manipulated by the control block at the end of the row. To simplify matters,

the cache is read and written according to only a few set scripts. When configurations

are read from outside memory, for instance, one configuration byte at a time is stored in

sequence from over the memory buses. When a configuration is retrieved from the cache, all

64 bits are read simultaneously. In every case, all the logic blocks along a row participate

in concert. No mechanism needs to exist for manipulating a single logic block’s cache in

isolation.

The demon of dynamic storage, of course, is retention. At the very least, the cache

will have to be refreshed periodically. Cache refresh involves the following sequence:

1. suspend array execution by disabling register latching and all wire output drivers;

2. write the active configuration back to the cache (can be overlapped with step 1);

3. for each of the three other cached contexts, precharge the bit lines, read into the active

configuration register, and write back to the cache;

4. precharge the bit lines and recall the suspended configuration into the active config-

uration register again;

5. wait for the configuration control lines to settle within the logic block; and finally

6. resume array exection.

Each of these operations can occur in parallel for all 64 configuration bits in all of the logic

blocks in the array. It should be pointed out that this refresh procedure depends once again

on the ability to suspend execution of the Garp array for an arbitrary number of clock

cycles, a feat not possible with ordinary FPGAs. The cache hardware could have been built

without this requirement, but then another register separate from the active configuration

register would have been needed, adding area to the configuration cache.

There is no problem refreshing the cache often enough to prevent loss from decay.

Assuming as much as 1% of execution time is set aside for refreshes, a full refresh could

easily be done every 50 µs, compared to milliseconds for a standard DRAM. The fact that

there are so few stored cache bits per active configuration register bit (only 4:1) gives the

configuration cache far more refresh bandwidth than is typical for DRAM.



101

Refresh can protect the dynamic storage from charge leakage, but it will still be

susceptible to rare upsets from stray subatomic particles. The only way to detect such events

is with redundancy. Flipped bits are certainly a rare occurrence; after all, mass market

DRAM is regularly sold today without any redundancy protection and hardly anyone seems

to notice the difference. But remember that configurations loaded into the Garp array are

checked to ensure that no wire has more than one driver; if one of these bits were to change

in the configuration, the results could be disastrous. Redundancy could therefore be used

for the configuration bits that choose output wires to drive. The logic block would need to

verify the consistency of the redundant coding and abort array execution, interrupting the

processor, if an error is detected. The goal is merely to protect the hardware, not to allow

the computation to complete as though nothing had happened. An alternative is to store

the few bits that matter with static RAM instead of DRAM. It is likely this would require

more area, but both methods could be tried and the smaller adopted.

As seen in the figures of logic block layout and especially in Figure 4.27, a logic

block’s active configuration is distributed through the block in dense rings around the logic

block datapath and the vertical wire contacts. These bus-like tracks are optimized strictly

for density, not speed; configuration bits are distributed in these tracks in polysilicon and

the second metal layer, with contacts from either side made through the first metal layer

as needed. In some instances, polysilicon leads straight to the gates of transistors being

controlled by the configuration bit. Because so much of the configuration is distributed

around the logic block in polysilicon wires, it has been assumed a configuration latched into

the active configuration registers will need a couple of clock cycles to fully dissipate.

Some decoding of the Garp configuration is necessary within the logic block. Other

than the input multiplexors and output drivers already covered, the amount of decoding

required is minimal, and thus is most easily done within each logic block component as

needed. As usual, the logic circuitry for decoding the configuration should be optimized

for area at the expense of speed. Figure 4.30 presents, for example, alternative circuits for

an AND gate created with a transmission gate that could be used in place of the more

common full-complementary version. When made with the smallest possible transistors,

such circuits can accomplish the necessary decoding fairly inobtrusively.
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Figure 4.30: (a) A full complementary AND gate. (b) An AND gate made with a trans-
mission gate. (c) A smaller version of (b) when the complement of one of the inputs is
already available.

4.3.7 Logic block functions

The tentative layout in Figure 4.27 leaves space for the internal logic block func-

tions previously summarized in Section 4.1.2 and documented in detail in Appendix A.

Technically speaking, six different functions are supported, but by design the six functions

can overlap some in their implementations. Figure 4.31 has a combined circuit with ev-

erything that must be fit into the reserved datapath portion of the logic block. Most of

the boxes in the figure are fairly simple operations; many are nothing but multiplexors, in

fact. (The purpose of all the pieces can be understood from the details in Appendix A.)

At the top are the permutation boxes alluded to in Section 4.1.2. On the left is a four-way

multiplexor implementing the select function and the “partial select” variant used for mul-

tiplication. Of the remainder, the largest pieces are the three-input table lookups and the

carry chain.

To help gauge the area needed for the datapath, the table lookups have been

layed out and included in Figure 4.27. Sixteen configuration bits provide the tables directly

and are closely bound to the lookup hardware. Because the table lookups are essentially

multiplexors, they are implemented here as binary trees of pass transistors just as the input

multiplexors are. Beside the lookup tables, the main other complex part in the datapath is

the carry chain, which can be expected to need an area a little less than that of the table

lookups.

Aside from the sixteen table bits, eleven configuration bits control the operation

of the datapath in a Garp logic block. Six of these bits are only needed for the permutation
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boxes; these have been brought to the top of the logic block datapath along with the inputs

themselves in the layout of Figure 4.27. Routing and decoding of the remaining five control

bits presents no real difficulty.

4.3.8 Speed, power, and area

In addition to the layout experiment, a circuit model for the critical path from one

logic block to another was created and simulated to arrive at an estimate of the maximum

clock speed for the array. As usual, the circuit model was also used to determine transistor

sizes in the layout. The path modeled was: (1) from a register in one logic block, (2) onto

a network wire, (3) over to a logic block the farthest distance allowed, (4) into an input

multiplexor, (5) through the slowest function path, and (6) to a register in the destination

logic block. Considering that most delay in FPGAs is through the wire network, the model

was careful to include all parasitic capacitances for the network wires in addition to all

transistors attached to every node along the path. Three separate critical paths had to be

considered, corresponding to the three different sequences guaranteed to fit within one clock

cycle in Section 4.1.4.

When the carry chain is used, it can be in the critical path. The carry chain itself

was not modeled, but reliance was placed on the speed of carry chains in other devices

created in similar process technologies. Interestingly, Hauck et al. did a detailed SPICE

simulation of a 32-bit carry chain for reconfigurable hardware implemented in a 0.6 µm

process and found the delay through the chain to be 6.1 ns [30]. However, their carry chain

can invert the carry during propagation, even though that is never needed for the basic

arithmetic operations and will slow down the carry chain noticeably. Since Garp does not

allow the carry to be inverted, its carry chain is expected to take less than 5 ns to cover 23

logic blocks.

With these assumptions, simulation of the critical path circuit model has indicated

that a 10 ns clock cycle, or 100 MHz clock, should not be too fast for the given 0.65 µm

process.

From the same simulations, a rough estimate of power consumption can also be

extrapolated for the array. This has been done by multiplying the worst-case power con-

sumed by each circuit component by the number of such components in the entire array.

The intention is not to get a highly accurate estimate but rather to disqualify entirely
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unrealistic implementation techniques. The resulting estimate for power consumed by the

array, not counting clock distribution, comes to about 4 W. Additional power would of

course be needed for Garp’s main processor and other parts, but the reconfigurable array is

expected to be almost half the die area and perform much of the heaviest computing. Even

considering the 4 W might be an underestimate, this seems within the right ballpark for

the array compared to a typical high-performance desktop processor pulling power in the

range of 15–20 W or higher.

Section 4.3.5 gave the area of a single logic block in the 0.65 µm process as

0.40 mm× 0.51 mm. Assuming 5% more in each dimension for the long wire buffers (Fig-

ure 4.23), and another 15% (the equivalent of almost five logic blocks rows) in the vertical

dimension for the array memory interface, the total size of an array of 32× 24 logic blocks

comes to 15.5 mm× 12.8 mm or approximately 200 mm2.
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Chapter 5

Benchmarks and Statistics

This chapter evaluates the Garp architecture by benchmarking it against a stan-

dard Sun UltraSPARC 1/170 for a variety of applications. First, a hypothetical Garp

implementation is defined that combines a Garp processor with a memory system identical

to the UltraSPARC’s. The software tools are then introduced that permit programs to be

written and simulated for this hypothetical Garp. The suite of benchmarks is presented

along with the performance of each system. The chapter ends with a collection of statistics

for the array configurations used by the benchmarks, in case the information may be useful

to future designs.

5.1 Hypothetical Garp

In an attempt to evaluate the Garp architecture, a hypothetical Garp has been

compared against a Sun UltraSPARC 1/170. The UltraSPARC is a 4-way superscalar 64-bit

processor running at 167 MHz, with 16 kB each of on-chip instruction and data caches. In

addition to a floating-point unit, the processor supports Sun’s VIS “graphics” instructions

for small SIMD operations. The UltraSPARC is implemented at 3.3 V in a 0.5 µm process

with four layers of metal, in a die size of 17.5 × 17.8 mm2.

The hypothetical Garp has been constructed by removing the SPARC’s super-

scalar integer and floating-point processing units from the UltraSPARC die and replacing

them with a MIPS processor extended with Garp’s reconfigurable array. Figure 5.1 shows

die floorplans of the actual UltraSPARC and the proposed Garp derived from it. This

surgery essentially puts a Garp on top of an UltraSPARC memory system. The new main
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Figure 5.1: (a) Floorplan of the UltraSPARC die. (b) The hypothetical Garp die constructed
in the same technology.

processor is a single-issue 32-bit MIPS-II, which is rather smaller and less powerful than

the UltraSPARC’s processing unit.

The previous chapter put the size of the Garp array in a 0.65 µm process as

15.5 mm × 12.8 mm, and its clock speed at approximately 100 MHz. Adjusting for the

UltraSPARC’s 0.5 µm process, it is believed the Garp array would scale to less than 12 mm×
10 mm and could be made to run at around 133 MHz. The additional fourth layer of metal

in the UltraSPARC process provides some obvious room for error in the extrapolated array

size. Another factor in our favor is the fact that layout in the UltraSPARC process is not

bound by the “least common denominator” of the MOSIS scalable CMOS design rules,

allowing improvements that also provide some room for error. The space allocated to the

reconfigurable array in Figure 5.1 corresponds to this scaled-down size.

Removing the floating-point unit of course means that software that needs floating-

point will be at a disadvantage on Garp. The situation is not as bad as it might seem at first,

because the reconfigurable array can be configured to help with floating-point operations,

as is testified for FPGAs by several sources [36, 49, 51, 68, 75]. Nevertheless, floating-point

arithmetic is not as fast in the reconfigurable hardware, particularly for double-precision

which is rather cramped in the small Garp array being considered here. The real intention

for a future processor is not to eliminate the floating-point unit but to keep it as part of

the main processor along with the reconfigurable array.
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Figure 5.2: The Garp programming environment. New or modified tools are highlighted.

5.2 Software tools

Software tools have been created that make it possible to write programs for the

hypothetical Garp and then simulate them with clock-cycle accuracy. The software path is

summarized in Figure 5.2. Only two tools are substantially new: the configurator and the

Garp simulator. The Garp assembler is merely a modified MIPS assembler.

An array configuration is coded in a “.ga” file in a simple textual language. This

source is fed through a program called the configurator to generate a representation of the

configuration as a collection of bits. For simplicity, the configurator creates a text file that

can be used as an initializer for an integer array in a C program.

The only need for assembly language programming is to invoke the Garp instruc-

tions that interface with the reconfigurable array. Since the compiler being used is the GNU

C Compiler (gcc), the same could be accomplished with inline ‘asm’ statements.
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5.2.1 The configurator

The configurator accepts a human-readable description of a configuration and con-

verts it to the binary representation accepted by the reconfigurable array. The input lan-

guage to the configurator is more akin to an assembly language than to either a high-level

language or the typical FPGA netlist. Data and operations must be placed explicitly within

rows and columns by the programmer. A configuration is defined as a collection of rows,

with each row containing within it logic blocks in specific columns. The basic syntax is

row optional-row-name:
{

column-number(s): logic-block-settings;
. . .

}

. . .

A feel for the permissible logic-block-settings is probably easiest to impart by ex-

ample. The following specifies a complete configuration for adding three 32-bit values in

columns 4–19 (the middle 16 columns of the array):

row .a: --Row 0

{

--Send Z registers onto vertical wires.

4-19: A(Zreg),function(A),bufferZ,Vout(Z);

--Send D registers onto horizontal wires below.

4-19: D(Dreg),bufferD,Hout(D);

}

row : --Row 1

{

4-19: D(Dreg),bufferD;

--Add D registers and values from row 0; latch result in Z registers.

4: shiftzeroin;

4-19: A(.a),B(above),C(Dreg),

add3,U(carry^sum),V(sum),result(U^K),bufferZ;

}

In this configuration, the values in the Z and D registers of row 0 and in the D registers of

row 1 are added together and their sum stored in the Z registers of row 1. Column 4 is the

least significant (rightmost) of the 16 columns. Row names (such as .a) must begin with a

period to distinguish them syntactically.
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The ‘A(.a)’ field in the second row specifies that the A input for those logic blocks

is to come from the row labeled ‘.a’—in this case, the first row. To obtain a connection

through vertical wires, the programmer merely names the source needed for a logic block

input. It is the responsibility of the configurator to choose specific vertical wires for making

the connections. The A inputs in row 1 of the example are thus taken over vertical wires

from row 0. The rather different syntax ‘B(above)’, on the other hand, indicates that the

B inputs are to be read from row 0 over the horizontal wires between the two rows. Each

logic block can drive one output onto vertical wires and one onto horizontal wires.

For the example given, the output from the configurator is the text

{

0x00000002,

0x00000000, 0x00000008, 0x00000000, 0x00000000, 0x00000000, 0x00000000,

0x00000000, 0x00000000, 0x0A00000E, 0xAAAA1C1E, 0x0A00000E, 0xAAAA1C1E,

0x0A00000E, 0xAAAA1C1E, 0x0A00000E, 0xAAAA1C1E, 0x0A00000E, 0xAAAA1C1E,

. . . Eleven lines elided . . .
0x7C940C0E, 0x66CCF800, 0x7C940C0E, 0x66CCD800, 0x00000000, 0x00000000,

0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000,

}

which is suitable for initializing an array of 32-bit integers in C.

5.2.2 Linking a configuration into a C program

Garp’s reconfigurable array is only used within the time consuming parts of a

program where it can be usefully employed. The remainder of the program is written in C,

is compiled with an ordinary C compiler, and is executed on the main processor without

reference to the reconfigurable array. A configuration thus has to be linked into an ordinary

C program.

Continuing with the example above, if the configurator output is in a file called

‘add3.config’, the C code

uint32_t config_add3[] =

#include "add3.config"

;

suffices to initialize a C array config_add3 with the desired configuration bits. This makes

the configuration accessible to the program; however, it will still have to be loaded and

activated in the array to actually do something. Since a configuration can only be invoked
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with the new Garp-specific instructions that are unknown to the compiler, some assembly

language programming is required.

The following Garp assembly code loads and executes the same example (refer

back to Table 4.3):

add3: la v0,config_add3 # Load v0 with pointer to config_add3 array.

gaconf v0 # Load configuration.

mtga a0,$z0 # Copy three operands to array, ...

mtga a1,$d0

mtga a2,$d1,2 # And step array 2 clock cycles.

mfga v0,$z1 # Copy result back from array.

j ra # Return from subroutine.

The names v0, a0, a1, a2, and ra refer to ordinary MIPS registers; la is the MIPS “load

address” instruction. The symbols $z0 and $d0 denote the Z and D registers of array row 0,

while $z1 and $d1 are the same for row 1. The MIPS subroutine calling convention passes

the first three subroutine arguments in registers a0, a1, and a2, with the subroutine return

value being passed back in register v0.

With this assembly language stub, a program can add any three integers a, b, and

c using the reconfigurable array by executing the ordinary subroutine call add3(a,b,c).

The add3 subroutine first loads the proper configuration into the array (or switches to it,

if it is already in the array’s configuration cache). It then copies its three arguments into

array registers, steps the array for 2 cycles to perform the addition, reads the sum back into

v0, and returns.

Of course this example involves too much overhead. In practice, the array would be

used for something substantial that could not just as easily be done in the main processor.

5.2.3 The simulator

A hardware implementation of Garp does not exist, so Garp programs must be

executed on a simulator. The simulator loads and executes standard MIPS executables.

Operating system calls are forwarded to the environment in which the simulator is running.

Outside of operating system calls, the simulator does its best to count true clock

cycles. The main processor is assumed to be only a simple single-issue MIPS. Interlocks

that stall instructions are observed and stall cycles counted. Memory caches are also mod-

eled, so that cache miss stalls can be added in. Simulation of the configuration cache and
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memory queues has been made to mimic real protocols at essentially a register-transfer

level. Although the simulator is unlikely to be cycle-for-cycle identical with an actual im-

plementation, its cycle counts should be realistic.

As far as practical, the full behavior of the UltraSPARC memory system has been

duplicated, from the perspectives of both the main Garp processor and the reconfigurable

array. The UltraSPARC 1 has the usual separate first-level instruction and data caches,

each 16 kB, and a 512-kB unified second-level cache. Further details about the UltraSPARC

memory system can be gleaned from Gwennap [26, 27].

5.3 Hand-coded benchmarks

Several benchmark applications have been coded by hand for Garp and their per-

formance compared against the same applications on the UltraSPARC. Table 5.1 lists the

benchmarks and summarizes the speed difference between Garp and the UltraSPARC for

selected input sizes. The applications chosen are intended to cover a range of behavior

and are not just those for which large speedups could be easily predicted. The first set,

DES, MD5, and SHA, are cryptography-related applications: DES is a standard encryption

algorithm, while MD5 and SHA are hash functions used for digital signatures. The other

benchmarks are two common operations on images, a typical sorting problem, and a cou-

ple of string functions from the standard C library. All of the benchmark applications are

covered in more detail in subsequent sections.

Cryptography applications have been chosen precisely because cryptography is

claimed to be the sort of application that gives fine-grained reconfigurable hardware a

chance to excel over clunky, instruction-fed processors. Three of the four cryptography

benchmarks (all but ECB-mode DES) have inherent feedback loops that make latency

critical. As mentioned later, such feedback is a frequent characteristic of cryptographic

algorithms that can limit the parallelism available.

In contrast, DES encryption in ECB mode is an example of an application with

tremendous data parallelism. The two image operations also fall into this category; all

should be opportunities to showcase the reconfigurable array’s ability to sustain many op-

erations simultaneously.

Sorting is a traditional challenge problem. In theory highly parallel, its need to

shuffle data in unpredictable patterns puts great stress on the memory system. By cleverly
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input 167 MHz 133 MHz
benchmark size SPARC Garp ratio

DES encrypt, CBC mode 1 MB 350 ms 91 ms 3.8
DES encrypt, ECB mode 1 MB 350 ms 18.7 ms 19
MD5 hash 1 MB 99 ms 55 ms 1.8
SHA hash 1 MB 103 ms 37 ms 2.8

Floyd-Steinberg dither of color image 900 kB 167 ms 9.8 ms 17
median filter of grey-scale image 300 kB 108 ms 2.5 ms 43

sort of 〈key, value〉 pairs 512 kB 63 ms 27 ms 2.4

strlen 1 kB 9.5 µs 0.94 µs 10
strcpy 1 kB 9.7 µs 1.19 µs 5.7
strlen 16 bytes 0.36 µs 0.23 µs 1.5
strcpy 16 bytes 0.46 µs 0.24 µs 1.7

Table 5.1: Synopsis of hand-coded benchmarks. The times for Garp are obtained from
program simulation. Except for strlen and strcpy, Garp execution times include the cost
of loading configurations into the cache from external DRAM.

complicating the work of the processor, the number of uncorrelated memory accesses to

slow memory can be reduced.

The standard C string functions are examples of workhorse routines that see use

over a wide range of data sizes—from strings only a few characters long to some over a

kilobyte. In a production Garp system, one would like to use the reconfigurable hardware

to accelerate standard library functions, fully transparently to calling programs. For small

data sizes, however, overheads could swamp any potential speedups.

In the benchmarks, small data is generally assumed to be in the cache when that

is a reasonable conjecture. Since the primary (L1) data cache is 16 kB, it is reasonable to

suppose that strings less than 1 kB are still in this cache. Likewise, the strlen and strcpy

functions themselves are assumed to still be in the processor’s first-level instruction cache

when the functions are called. By the same token, Garp configurations for these functions

are assumed to be in the configuration cache when the functions are called on Garp. No

such assumptions have applied to the other benchmarks, however. Aside from strlen and

strcpy, quoted Garp execution times include the cost of loading configurations entirely

from external DRAM.

The process of choosing the parts of the benchmarks to implement in the Garp

reconfigurable hardware, and the job of designing the configurations, has all been done by

hand for these examples. In no case has any attempt been made to do anything productive
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with the main processor while the Garp array is operating. Speedup numbers are thus free

of any multiprocessing effects.

5.3.1 Data Encryption Standard (DES)

One of the most important encryption algorithms over the last 20 years has been

the Data Encryption Standard, or DES [67]. DES is a good application for reconfigurable

hardware because normal processors have trouble implementing it efficiently. Implementa-

tions of DES in FPGAs have been reported by Tse et al. [72], by Miyamori and Olukotum

for their REMARC board [57], and by Kean and Duncan [42].

DES encrypts 64 bits of data at a time, using a 56-bit key. Each group of 64 bits

is run through an “obfuscation loop” sixteen times, and it is in this loop that DES spends

most of its time. The 64 bits are first divided into two 32-bit quantities R−1 and R0, and

then the following steps are repeated for i = 1 up to 16 (see Figure 5.3):

1. Extract eight 6-bit subsequences from Ri−1, and XOR these with 48 bits from the

encryption key.

2. Apply each of the resulting 6-bit values as an index into an “S-box” table of 4-bit

values. (Each S-box is unique and approximates a random function.)

3. Perform a permutation on the 32 bits of S-box results. (This permutation is always

the same.)

4. XOR the permuted result with the older Ri−2 to form the new Ri.

After sixteen iterations, the encrypted 64-bit output is taken from R15 and R16.

Software implementations of DES invariably implement the S-boxes as table look-

ups requiring a read from memory for each S-box evaluation. All told, 16 × 8 = 128

table-lookup memory reads are needed for each 64 bits encrypted. On the other hand, good

software implementations can avoid the final 32-bit permutation by pre-permuting the S-

box table entries. This makes the table entries a full 32 bits in size, but the eight S-box

outputs need only be ORed together before being combined with Ri−2.

Unlike software, any sufficiently large reconfigurable hardware can implement this

algorithm directly. The S-box table lookups and all the bit permutations can be done

quickly and in parallel, without reference to external memory. A configuration in Garp’s

array needs only five cycles per inner loop iteration.
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Figure 5.3: One iteration of the inner loop of DES. The ⊕ symbols indicate XOR

operations.
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Each iteration of the DES loop uses a different 48 bits from the key in the XOR in

step 1 above. Thus in addition to the main loop, the 56 key bits have to be constantly per-

muted. By design, the permutation sequence is the same for every 64-bit group run through

the obfuscation loop, so software implementations precompute the key permutations once,

off-line, and subsequently read them from an array as each 64-bit group is encrypted. For

the Garp configuration, it is easy enough to dedicate part of the array for permuting the

key on the fly.

There are two common modes in which DES is employed: ECB (electronic code-

book) and CBC (cipher block chaining). ECB mode encrypts each 64 bits of a message

separately, whereas CBC mode uses the results from encrypting all the previous 64-bit

groups to help encrypt the next 64 bits. The chaining property of CBC mode makes the

encryption more secure, but introduces a strict data dependency from one 64-bit encryption

to the next. With ECB mode, the encryption of every 64-bit piece of a message can all be

done in parallel.

Simulation indicates that Garp would be 3.8 times faster than the UltraSPARC in

CBC mode, where each 64-bit piece is encrypted separately in sequence. For ECB mode,

the DES configuration’s pipeline can with very little modification work on five encryptions

simultaneously, making the total speedup 3.8× 5 = 19 times faster than the UltraSPARC.

5.3.2 MD5 and SHA hashes

Another important type of cryptographic operation is the one-way hash function.

An ordinary hash function maps an arbitrarily long string of bits to a small, fixed-size hash

value. What distinguishes a one-way hash function is the difficulty of finding two different

source strings that the function maps to the same hash result. One-way hash functions are

used for generating digital signatures of documents. Two major one-way hash functions

have been tried on Garp, MD5 and SHA [67]. MD5 has also been done for the NAPA1000

by Arnold [3].

MD5 treats a source string as a sequence of 512-bit blocks, updating the overall

hash value as each block is processed in turn. The 128-bit hash is accumulated in four 32-bit

variables named a, b, c, and d. Updating the hash for a single block requires 64 steps of

the form depicted in Figure 5.4. Each individual step incorporates 32 bits from the current

512-bit block, but these 32-bit pieces are not all read sequentially from the block. As there
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Figure 5.4: One iteration of the inner loop of the MD5 hash. A different 32-bit constant
and a different rotation distance are applied each iteration. The bitwise logical function
changes every 16 iterations.

are only sixteen 32-bit words in the entire block, each source word gets used exactly four

times.

Each of the 64 steps also requires a unique 32-bit constant; and a rotation operation

changes from step to step as well. Every sixteen steps, the bitwise logical function being

used changes. Four different logical functions are thus employed in all.

To implement MD5 in Garp, four configurations have been created, corresponding

to the four logical functions. Each configuration physically contains four steps, to take

advantage of the fact that the rotation distances repeat every four steps within each group

of sixteen steps. The rotations can therefore be “hard-wired” for the proper distances.

The outputs of the fourth step are looped back to the inputs of the first, so that four

iterations through the configuration equal sixteen algorithm steps. After four iterations,

the next configuration is loaded from the cache, for another sixteen steps with the next

bitwise logical function.

Because the 32-bit source pieces are not all read sequentially (and because there

is no room to keep them in the array), demand memory accesses are used to load the
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correct word at the proper time. For their part, the 64 constants are supplied sequentially

in memory and read through one of the memory queues.

The latency through the four steps in one of these configurations is 17 clock cycles,

averaging to 4 1

4
cycles per algorithm step. However, repeatedly changing configurations and

resetting the memory queue (every 64 steps) consumes additional clock cycles. Simulation

shows that, for large blocks, Garp is only about 1.8 times as fast as the UltraSPARC on

the MD5 hash.

The SHA hash function is similar in style to MD5, differing only in all the details.

SHA generates a 160-bit hash value using 80 algorithm steps for each source block. Like

MD5, four different configurations are used in a cycle on Garp, corresponding to four differ-

ent bitwise logical functions. For SHA, Garp is about 2.8 times faster than the UltraSPARC

over large inputs.

5.3.3 Image dithering

Two image processing applications have also been implemented on Garp, the first

being the dithering of a full-color 480×640 image to a fixed palette of fewer than 256 colors.

The input image stores three bytes per pixel, for a total of 256 levels each of red, green,

and blue for each pixel. The target palette in this case is the so-called “Web palette” used

by Web browsers such as Netscape Navigator. This palette contains 216 = 63 colors in an

orthogonal arrangement with six levels each of red, green, and blue. The dithering algorithm

employed is Floyd-Steinberg error diffusion, which is essentially the standard algorithm for

this task [73].

The dithering of an image proceeds from top to bottom in scan-line order. Dither-

ing each pixel involves the following two steps:

1. Find the color in the target palette closest to the given pixel color.

2. Find the color error introduced by using a not-quite-correct color, and distribute this

error to neighboring pixels by adjusting the neighbors’ colors.

Figure 5.5 shows how a pixel’s color error is distributed (diffused) to its neighbors in the

Floyd-Steinberg algorithm.

Finding the closest target color is a matter of reducing the source image’s 256 levels

each of red, green, and blue to the six levels each in the target palette. This is accomplished
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Figure 5.5: Floyd-Steinberg error diffusion. An image is dithered from top to bottom in
scan order. Replacing a pixel’s original color with the closest available color results in a
color error e. This error gets pushed to four as-yet-uncommitted neighboring pixels by
adjusting the original colors at those pixels. The process repeats with the next pixel to the
right.
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Figure 5.6: Execution times and speedups for image dithering. The two smallest image
sizes tested are 60× 80 and 120 × 160 pixels.
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by dividing each color component by (256 − 1)/(6 − 1) = 51 and rounding. Calculating

the error requires multiplying the result back by 51 and subtracting. Distributing the error

involves four scales and additions to neighboring pixels as seen in the figure. To save some

work, errors diffused to a single pixel by multiple of its neighbors are added together before

being added into the destination pixel.

For this application, Garp has been found to be as much as 17 times faster than the

UltraSPARC on large images. Figure 5.6 graphs the Garp speedups over the UltraSPARC

for a range of image sizes. Garp’s advantage comes from its ability to manipulate 8-bit

quantities more adeptly. On both Garp and the UltraSPARC, the division by 51 is done by

multiplying by an approximation to 1/51. Multiplies are implemented on both in terms of

shifts and adds, which Garp can do fairly efficiently.

5.3.4 Image median filter

The other image operation implemented is a median filter, which can be used to

correct outlying “spots” of noise in an image. Variants on the median filter have been done

by Abbott et al. [1] for the Splash 2 board and by Box [8] for a custom FPGA board. For

this benchmark, the images are grey-scale instead of color, although median filters can be

done on color images, too.

The median filter replaces each pixel from the original image with the median of

the nine pixels in the 3×3 neighborhood around that pixel. The median of a set of values is

the value in the middle when the set is sorted into increasing order. Sometimes the median

of the nine pixels is already the one in the center, but usually it will be a neighboring pixel

with nearly the same value. A single pixel with an extreme white or black value inconsistent

with its neighbors will never be chosen for the final image, which is how the filter eliminates

such spots.

An important point is that, although it is easiest to think of the median operation

in terms of sorting, sorting the nine pixel values to find the median is more work than

strictly necessary. Knowing the median is less information than knowing the full sort of the

nine values; therefore, it should not be shocking that the median value can be obtained with

less work than doing a full sort. An algorithm for finding the median of exactly nine values

is presented in Figure 5.7. The algorithm is based on two primitive operations: (1) sorting

three values, and (2) finding the median of three values. Three values a, b, and c can be
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Figure 5.7: An algorithm for finding the median of nine values arranged in a 3×3 grid. First,
individually sort the three columns from least to greatest value. Then find the medians of
each of the three diagonals, wrapping around as shown. The median of those three medians
is the median of the original nine.

sorted with the following short sequence of compare-and-exchanges:

if ( c < a ) Exchange a and c;

if ( b < a ) Exchange a and b;

if ( c < b ) Exchange b and c;

Finding the median of a, b, and c is even easier (assuming C notation):

if ( c < a ) Exchange a and c;

median = ( b < a ) ? a : ( c < b ) ? c : b;

As the figure explains, three of the 3-element sorting operations followed by four of the

3-element median operations suffice to extract the median of the original nine values.

A reasonable implementation of the median filter processes the image in scan-line

order, so that after finding the median around one pixel, it next works on finding the median

for its neighbor one to the right. Observe in Figure 5.7 that much of the work of the first

step—sorting three pixels in three columns—will already have been done for the previous

pixel on the left. Only the rightmost column is new. Therefore, it pays to save the sort of

two of the columns from one pixel to the next. This reduces the work for each output pixel

to just one 3-element sorting operation followed by four 3-element median operations.

A Garp implementation of the median filter algorithm turns out to be more than

40 times faster than the UltraSPARC on large images. Speedup numbers for different sizes

of images are graphed in Figure 5.8. Compare-and-exchange operations are not something

the typical processor does especially well, and that is the bulk of the median filter. The

Garp configuration, in contrast, has a pipeline fed by three memory queues reading three

scan lines simultaneously, one pixel per cycle each. At the other end of the pipeline, output

pixels are written at the same rate of one per cycle (only with some finessing each time the

production wraps around the edge of the image).



122

image size (pixels)

60 x 80   240 x 320 480 x 640

ex
ec

ut
io

n 
ti

m
e 

(m
s)

0

20

40

60

80

100

120
UltraSPARC
Garp

image size (pixels)

60 x 80   240 x 320 480 x 640

G
ar

p 
sp

ee
du

p

0
5

10
15
20
25
30
35
40
45
50

Figure 5.8: Execution times and speedups for the image median filter benchmark. Again,
the two smallest image sizes tested are 60 × 80 and 120 × 160 pixels.

5.3.5 Sorting

Sorting is yet another of the Garp benchmarks. This benchmark orders a sequence

of 〈key, value〉 pairs according to their 32-bit keys. The corresponding 32-bit values are not

interpreted but must be correctly permuted with the keys.

The best implementation of sorting on Garp varies depending on the number of

elements to sort. For less than 10,000 elements, a radix-sorting algorithm is used involving

two buffers. One pass of the radix sort reads elements from one buffer and writes to the

other; the next pass then works in the opposite direction for the next radix digit. With a

radix size of four bits, eight passes are needed to fully sort the 32-bit keys.

A single radix sort pass is implemented with two Garp configurations. The first

reads the entire source buffer and counts the number of elements with each digit value

(one of 0, . . . , 15) at the digit position for that pass. Once it is known exactly how many

elements there are for each digit value, the second configuration reads the elements a second

time and writes them to the output buffer in their proper places. Using eight such passes,

the radix sort algorithm can sort any number of elements in strictly linear time. The first

configuration reads two elements every clock cycle, and the second processes one element per

cycle, for a total of 1 1

2
cycles per element, per pass (not counting some inevitable memory

stalls). With eight passes, that comes to only 12 clock cycles per element for the entire

radix sort.

However, if the two radix sort buffers do not fit within the second-level (L2) cache,
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Figure 5.9: Execution times and speedups for sorting. Five tests have been run, with 1024,
4096, 16,384, 65,536, and 1,048,576 (220) 〈key, value〉 elements. At a million elements, which
is off the scale of both graphs, the Garp speedup is 1.89 over the UltraSPARC.

cache misses will add tremendously to the total time. The radix sort’s mandatory eight

passes—each reading all of the elements twice—then become a serious liability. To avoid

this cost, the Garp implementation uses radix sort on only 10,000 elements (80 kB in size)

at a time. The input set is divided into groups of 10,000, and each group is sorted using

the radix sort algorithm. The sorted groups are then merged together with mergesort-style

passes. Each merge takes eight separate sorted streams as input and outputs a single sorted

stream eight times as long. Unlike the radix sort passes, the merge passes are expected to

overflow even the 512 kB second-level cache, thus forcing reads and writes ultimately to

go to external DRAM. Up to 80,000 elements can be sorted this way with only a single

expensive merge pass, and up to 640,000 elements with two merge passes through all the

elements.

The merge pass is performed by an array configuration that reads irregularly from

eight streams and writes sequentially to one merged stream. After each output element

is written to the merged stream, the next element from the same input stream must be

read before another output element can be chosen. The full latency between writing output

elements is nine clock cycles, not including the time to service any cache misses. Cache

misses occur frequently but not on every read. Because a cache line is larger than one

element, each cache miss brings more than one element into the cache, and thus a miss

does not occur for the subsequent elements in the same cache line. For the output stream,
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Garp’s memory queue hardware is used to buffer the merged stream into fewer, larger

memory stores.

The radix sort and mergesort techniques are generally too complex for the Ul-

traSPARC, which does better with a simple quicksort. Attempts to do something more

sophisticated almost invariably lose more time executing the additional instructions than

is saved by some clever algorithm. As with previous benchmarks, Figure 5.9 shows the

difference in execution times between Garp and the UltraSPARC for different numbers of

elements.

The bump in the speedup graph is due to cache limitations. With an unbounded

L2 cache, speedups would continue to rise beyond a factor of four for sorts of more than

4096 elements. However, by 16,384 elements, the effects of cache misses are being felt; and

execution times for larger sizes are dominated by DRAM access latencies.

5.3.6 Library functions strlen and strcpy

The last two benchmarks are the strlen and strcpy functions from the standard

C library. The strlen function is fairly easy to implement. The Garp configuration for

this function has a pipeline that, at one end, accepts sixteen new characters every clock

cycle, and at the other accumulates a count of the string’s length. The configuration must

search for a null character in each bundle of sixteen and cut short the count as soon as one

is found. The pipeline for doing this is four cycles long (plus four cycles of memory latency

to feed the pipeline).

The strcpy function is a little more complex, since strcpy must write out the

string at the same time—up to, but not one byte beyond, the terminating null character.

For the middle part of a string, the strcpy configuration has a three-cycle pipeline that

reads and writes sixteen characters on alternating clock cycles. After the end of the string is

found, additional parts of the configuration write the remainder of the string, four characters

at a time at first, then one character at a time if necessary.

Figures 5.10 and 5.11 have the usual graphs of execution times and speedups. Note

that Garp’s performance on small-length strings is not substantially better than that of the

UltraSPARC. For strings of length 4, Garp is only 10% faster than the UltraSPARC for

strlen, and 22% for strcpy. This increases to factors of 12 and 6, respectively, for longer

strings.



125

string length (bytes)

64 1024 4096

ex
ec

ut
io

n 
ti

m
e 

(u
s)

0

5

10

15

20

25

30

35

40
UltraSPARC
Garp

string length (bytes)

64 1024 4096

G
ar

p 
sp

ee
du

p

0

2

4

6

8

10

12

14

Figure 5.10: Execution times and speedups for the strlen function. Strings of length 4,
16, 64, 256, 1024, and 4096 characters have been tested.
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Figure 5.11: Execution times and speedups for the strcpy function. The same string
lengths have been tested as for strlen in Figure 5.10.
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Figure 5.12: The time to bring the strlen or strcpy configuration in from DRAM compared
to the time to execute the function on strings of various lengths.

The Garp hardware supports reads and writes of sixteen bytes at a time without

requiring that the memory address be aligned on any special boundary. However, if a 2k-

byte access is not aligned on a 2k-byte boundary, Garp breaks the access into two parts,

introducing an extra stall cycle as necessary. The Garp execution times in Figure 5.10

and 5.11 assume no particular string alignments, and thus already include these extra cycles.

If the source and destination strings happen to be aligned on sixteen-byte boundaries, Garp

speedups on long strings exceed a factor of 17 for strlen and a factor of 9 for strcpy.

As noted earlier, for these functions (and these functions only), all data and func-

tion code is assumed to be resident in the first-level caches when the string functions are

called. That applies not only to the instruction and data L1 caches, but also to the configu-

ration cache in the reconfigurable array. In the case that the strlen or strcpy configuration

is not already cached, the time to load the configuration from external DRAM (or from the

L2 cache) could negate any advantage from using the reconfigurable array, depending in

part on how many times the function is called after the configuration is brought into the

cache. Figure 5.12 graphically compares the time required to load the configuration versus

the time to execute the function for strings of various lengths. As the graphs show, configu-

ration loading time is not negligible; but the surprising thing might be that it is not actually

worse. The efforts to minimize configuration encoding size and maximize the bandwidth

from memory in Garp keep the configuration cache miss penalty to a manageable size.

While Figure 5.12 is instructive, the more relevant question is how much config-
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number of calls to break even
strlen strcpy

4 37 30
string 16 7 10
length 64 2 4

256 1 1

Table 5.2: The number of calls to strlen or strcpy needed to cover the initial configuration
loading time and achieve parity with the UltraSPARC.

uration loading undermines Garp’s speed compared to the UltraSPARC. Table 5.2 looks

at this question from the point of view of the number of function calls that must be made

before Garp fully pays down the cost of loading the configuration. The table suggests that

for a typical average string length of eight characters, 20 calls or so should be enough to

cover the cost of loading the configuration from memory and thus break even relative to

the UltraSPARC.

5.3.7 Benchmark review

A sampling of the benchmark test cases are brought together in Table 5.3, sorted

approximately by speedup. The table also identifies the immediate obstacle to achieving

greater speedup in each cases. For the top three entries, the size of the Garp array is

currently the limiting factor, meaning that a larger array would make it possible to push

the speedup numbers higher. For long string lengths, the strlen and strcpy functions are

limited instead by Garp’s memory bandwidth. Doubling the available memory bandwidth

would approximately double the speedup that could be achieved for these functions. As

made clear earlier, the need to arbitrarily permute the contents of memory is primarily what

limits the sorting benchmark. The remaining cases are constrained by the latencies of loop-

carried dependencies, or by the greater significance of function overhead when operating on

only small amounts of data.

A line in Table 5.3 divides the benchmark cases into two groups, with the ones

above the line being examples of applications with abundant data parallelism that is easily

exploited, and the ones below the line not having this property. The tentative conclusion

to draw from these results is that, while there can be an advantage to using custom circuits

to better implement non-parallelizeable applications, the real goldmine lies in applications

with accessible parallelism. In fact, the majority of FPGA applications quoted—genome
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benchmark speedup limiting factor

image median filter, 480× 640 43 array size
image dither, 480× 640 17 array size
DES encrypt, ECB mode, 1 MB 19 array size
strlen, 4 kB 12 memory bandwidth
strcpy, 4 kB 6.3 memory bandwidth

DES encrypt, CBC mode, 1 MB 3.8 latency
sort, 4096 elements 3.9 irregular memory accesses
sort, over 1 million elements 1.9 irregular memory accesses
SHA hash, 1 MB 2.8 latency
MD5 hash, 1 MB 1.8 latency
strlen, 16 bytes 1.5 overhead
strcpy, 16 bytes 1.7 overhead

Table 5.3: A representative set of benchmark test cases, sorted approximately by speedup,
with the factors limiting further improvements.

matching, image filtering, military target recognition, graphics rendering, neural networks,

etc.—are excessively data-parallel. Although there has not been time to try them all, many

of these applications should presumably work well on Garp, too. In contrast, the non-

parallel applications seem to be limited to speedups in the low single digits, sometimes

reaching as high as 4.

5.4 Configuration statistics

This section presents numerous statistics on the Garp array configurations used in

the benchmarks. Table 5.4 names the ten configurations covered and also gives their sizes

in array rows and numbers of logic blocks. The four MD5 configurations (Section 5.3.2)

are nearly identical, and so only one of them has been analyzed here. Likewise for the

SHA hash. The configuration for DES in ECB mode is not exactly the same as the one for

CBC mode, but, again, there is enough similarity that only the CBC-mode configuration is

considered. The other benchmarks have only one configuration apiece, with the exception

of the sorting benchmark which, as explained previously, uses three: two for the radix sort

pass, and one for the mergesort pass.
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configuration number of number of
benchmark name array rows logic blocks

DES encrypt, CBC mode DES-CBC 24 552
MD5 hash MD5 (1 of 4) 28 644
SHA hash SHA (1 of 4) 24 552

image dither Dither 19 437
image median filter Med-filter 12 276

sort Radix-1 (counting digits) 24 552
Radix-2 (copying elements) 21 483
Merge 32 736

strlen strlen 6 138
strcpy strcpy 16 368

Table 5.4: The names and sizes of ten configurations from the benchmarks.

5.4.1 Functional density

For each configuration, Table 5.5 gives the fraction of logic blocks configured for

any purpose, and also the percentage use of major logic block subsections. (It may be

helpful to refer back to Figures 4.4 and 4.31 for the structure of a Garp logic block.) Most

of the categories in the table (inputs, functions, and so on) are subdivided further in later

tables.

Every logic block has four physical inputs, and each contributes to the inputs

utilization percentage in the table depending on whether that input has an effect on the

outputs for that logic block. If a block is configured in such a way that the value of an

input has no impact on the logic block’s results, then that input is considered unused. The

D input is also considered active if the D output is used—either latched in the D register

or driven onto an output wire (Figure 4.4). Active inputs do not necessarily come from

other logic blocks across the wire network but might be registers or constants within the

logic block. Table 5.6 breaks out the utilization of each of the four logic block inputs, A,

B, C, and D, separately.

The next two categories, crossbars and shift-inverts, are the permutation boxes

described in Section 4.1.2 and visible in Figure 4.31. There are four physical crossbar boxes

and three shift/invert boxes. Because Garp does not permit the crossbars and shift/invert

boxes to both be in use at the same time in a logic block, the average of these two categories

can be no more than 50%. Which is operative depends on the logic block’s function mode.

A permutation box is considered used (or active) if the input connected to it is active and
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DES-CBC

  71%   54%
  32%   12%

  50%   44%   39%

MD5

  73%
  48%   39%

  5%

  64%
  30%   44%

SHA

  72%   54%   48%
  6%

  72%

  12%
  40%

Dither

  84%
  51%

  11%
  40%   61%

  38%   51%

Med-filter

  72%
  44%   23%   10%

  46%   50%   44%

Radix-1

  72%
  27%   21%   5%

  64%

  8%
  36%

Radix-2

  81%
  40%   25%

  1%

  67%

  9%
  63%

Merge

  87%
  64%

  40%   20%

  85%

  19%
  43%

strlen

  88%
  41%   33%   12%

  88%

  11%
  43%

strcpy

  80%
  54%   37%

  4%

  71%
  44%   53%

any
part inputs crossbars

shift-
inverts functions D paths registers

All

  77%
  49%   32%   12%

  67%
  25%   45%

any
part inputs crossbars

shift-
inverts functions D paths registers

Table 5.5: Utilization of the major logic blocks parts.



131

DES-CBC

  60%   50%   49%   58%

MD5

  69%   64%
  37%   30%

SHA

  72%   70%   64%
  12%

Dither

  70%   53%   41%   46%

Med-filter

  62%   45%
  16%

  61%

Radix-1

  64%
  21%   14%   10%

Radix-2

  71%
  20%   10%

  60%

Merge

  84%   84%
  45%   46%

strlen

  88%
  41%   26%   11%

strcpy

  76%
  49%   31%

  64%

input A input B input C input D

All

  71%   53%   36%   39%

input A input B input C input D

Table 5.6: Utilization of each of the four logic block inputs tabulated separately.
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DES-CBC 5 9
45

100 100 100 100 100 100 100 100 100 100 100 95 100 95 91 91

5 0 0 0

MD5
11 11 4

100 96 96 96 96 96 96 96 96 96 96 96 100 100 100 96

21 21 21 21

SHA 8 8 8

100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100

0 0 0
38

Dither
42 58 74 95 89 89 89 95 79 95 95 89 89 89 95 84 100 100 100 84 84 74

37

Med-filter

58 42 25 42 50
75 92 92 92 92

67
92 92 92 83 100 100 100 100

67
42 42 33

Radix-1 8 0 0

75 75 75 75 75 83 83 83 83 83 83 92 92 100 100 92 79 71 71 71

Radix-2 5

86 86 90 90 86 86 86 90 90 90 90 90 90 95 95 100 100 81 81 81 81

0

Merge

63 84 81 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100
75

0 0

strlen
17 0

100 100 100 83 83 100 100 100 100 100 100 100 100 100 100 100 100 83 83 83 83

strcpy

88 75 81 100 100 100 100 94 94 94 94 94 94 94 94 100 100 100 100

6 6 0
25

22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
logic block column

All
29 39 46

92 92 92 93 94 94 95 94 95 95 95 96 97 100 99 96
51 45 31 25

22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
logic block column

Table 5.7: Logic block utilization by array column. Columns 4 through 19 are the middle
16 logic blocks of the array, aligned with the memory bus.
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the input passes through that permutation box as part of the selected function mode for

that logic block. Active permutation boxes do not necessarily perturb the input but may

pass the value through as given and still be counted. All that matters here is that they had

an opportunity to perturb the input value.

In the functions column, a logic block is generally counted if the function Z output

is used somewhere. However, a logic block configured as a simple table lookup that merely

passes one of the inputs unchanged (thus ignoring the other inputs) is not considered to

have a useful function and is not counted.

The D paths entry counts only those cases for which the D output is driven onto

an output wire. In most instances, the D path is used to make a connection from one wire

to another, since the Garp wire network has no way to connect wires otherwise.

Lastly, the registers category reports the utilization of the Z and D registers, which

may participate in the circuit or be bypassed (Figure 4.4).

Table 5.7 divides out overall logic block utilization (the any part category of Ta-

ble 5.5) for the 23 columns of blocks in the reconfigurable array. The center section of the

array in columns 4 through 19 is aligned with the middle 32 bits of the memory bus and

thus is usually the core of any datapath configured in the array. The extra logic blocks—

three on the left and four on the right—are typically used for control signals; although

in configurations layed out by hand such as these are, they sometimes participate in the

computation, too. The table clearly shows that the side logic blocks are not employed as

consistently as those in the middle sixteen columns. Nevertheless, it is safe to say their ex-

istence contributes to so many of the numbers reaching up to 100% in the middle columns.

From experience, not having the side blocks would make it impossible to pack the main

datapath as tightly, almost surely resulting in a decrease in functional density in the array

overall.

5.4.2 Logic block inputs

Among the inputs actively in use, Tables 5.8 and 5.9 break down the sources of

the inputs by type. The previous section defined what counts as an active input. Besides

the obvious option of reading from a nearby network wire, any of the four inputs (A, B,

C, or D) can be taken directly from one of the two registers in the logic block, or can be

configured as a constant. Note that a third of the inputs (33%) come from one of these
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DES-CBC   0%   0%   10%
  33%   56%

MD5   2%   1%   13%
  44%   41%

SHA   0%   0%
  29%   36%   35%

Dither
  14%   5%   16%   27%   39%

Med-filter   8%   1%   14%   16%
  61%

Radix-1   1%   0%
  49%

  22%   29%

Radix-2   0%   0%
  38%   45%

  16%

Merge
  16%   0%

  28%   25%   31%

strlen
  19%   1%

  43%
  4%

  33%

strcpy   6%   0%
  40%

  17%   37%

zero
constant

nonzero
constant

internal
register

vertical
wire

horizontal
wire

All   6%   1%
  26%   30%   37%

zero
constant

nonzero
constant

internal
register

vertical
wire

horizontal
wire

Table 5.8: Distribution of input sources among active inputs. All rows add up to 100%.
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DES-CBC
  34%

  5%
  57%

  4%

MD5

  54%
  0%   20%   25%

SHA
  29%   36%

  0%
  34%

Dither

  85%

  1%   10%   3%

Med-filter

  54%
  8%   22%   16%

Radix-1
  41%

  9%
  39%

  11%

Radix-2
  29%

  6%
  54%

  11%

Merge
  18%   27%   16%

  39%

strlen
  20%   35%

  11%
  35%

strcpy

  47%
  4%   9%

  39%

row above
H wire

row above
G wire

same row
H wire

same row
G wire

All
  41%

  13%   24%   22%

row above
H wire

row above
G wire

same row
H wire

same row
G wire

Table 5.9: Further subdivision of the horizontal wire inputs from the previous table.
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sources and not from a wire.

For inputs read over a horizontal wire, Table 5.9 further distinguishes whether the

wire is a local (H) or a global (G) wire, and whether it is from the row above or along

the same row. (The different types of horizontal wires were explained in Section 4.1.3.)

Interesting to note is that almost two-thirds (64%) of the signals read from a horizontal

wire come from the row above and only a third are from the same row.

5.4.3 Logic block functions

For logic blocks with a useful function, Table 5.10 breaks down the percentage use

of each function mode (recall Section 4.1.2 and Table 4.2). Partial select mode is never

used because none of the chosen benchmarks performs a multiply of two variable values.

The only benchmark requiring any multiplication at all is image dithering, which explains

why its configuration is the only one to make much use of triple-add mode. Perhaps not

surprisingly, the cryptography applications make more use of the table-lookup functions

than the other benchmarks.

Table 5.11 shows how the permutation boxes have been configured for the different

applications. Section 5.4.1 specified what permutation boxes are considered active and are

thus included in the table. Although it is almost never used, the reverse crossbar function

comes for free in the hardware given the other three options (straight, high-bit duplicated,

low-bit duplicated). This should be even more obvious for the combined shift-and-invert

operation. Actually, all of the shift/invert variants are important for multiplications by

various constants, despite the fact that the combined shift-and-invert case seems not to

have been needed for the multiplies done by the image dithering benchmark.

5.4.4 Granularity

Table 5.12 gives the results of an experiment to find the apparent bit widths of

operations encoded in the configurations. Configurations have been searched (mechani-

cally) for sequences of similarly configured logic blocks that could be considered multi-bit

operations, each layed out along a row. The table expresses the results in terms of the

percentages of logic blocks within the perceived multi-bit operations of each size, ranging

from 2 to 36 bits wide. Only even widths are possible because the Garp array itself has a

granularity of 2 bits.
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DES-CBC   7%

  68%
  24%

  0%   2%   0%

MD5
  46%

  8%   4%   0%
  39%

  4%

SHA

  83%

  8%   0%   0%   1%   8%

Dither   2%   4%   5%   0%
  28%

  62%

Med-filter   2%   6%   22%   0%

  70%

  0%

Radix-1
  15%   10%   3%   0%

  67%

  4%

Radix-2
  19%   5%   2%   0%

  74%

  0%

Merge   8%   3%   23%   0%

  66%

  0%

strlen
  14%   5%   0%   0%

  68%

  13%

strcpy
  41%

  4%   6%   0%
  49%

  0%

4-input
table

dual 3-input
table select

partial
select

carry
chain

triple
add

All
  27%   11%   9%   0%

  46%
  8%

4-input
table

dual 3-input
table select

partial
select

carry
chain

triple
add

Table 5.10: Distribution of logic block function modes. Only logic blocks with a useful
function are counted, so all rows add up to 100%.
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DES-CBC
  24%

  48%   28%
  0%

  84%

  0%   16%   0%

MD5

  86%

  8%   6%   1%

  100%

  0%   0%   0%

SHA

  94%

  3%   3%   0%

  100%

  0%   0%   0%

Dither

  77%

  11%   12%   1%

  66%
  14%   21%   0%

Med-filter

  70%
  17%   12%   1%

  100%

  0%   0%   0%

Radix-1

  67%
  19%   14%   0%

  81%

  10%   10%   0%

Radix-2

  71%
  16%   13%   0%

  56%
  22%   22%   0%

Merge

  72%
  20%   8%   0%

  96%

  4%   0%   0%

strlen

  68%

  2%
  29%

  1%

  100%

  0%   0%   0%

strcpy

  84%

  9%   8%   0%

  100%

  0%   0%   0%

straight high low reverse straight invert shift
shift +
invert

All

  74%

  16%   11%   0%

  84%

  6%   9%   0%

straight high low reverse straight invert shift
shift +
invert

Table 5.11: Distribution of permutation box functions. Only active crossbar and shift/invert
boxes are counted, as specified in Section 5.4.1.



139

DES-CBC

63

4 0 0 0 0 0 0 0 3 0 0 7 0 0 13 9 0

MD5 6 5 1 2 5 4 3 7 0 0 0 0 0 6 0

62

0 0

SHA 5 1 0 0 0 0 0 0 0 0 0 0 3 0 8

84

0 0

Dither
11 8 6 11 4

36
8 0 0 0 0 0 0 8 0 9 0 0

Med-filter 7 5 5
44

20 0 0 20 0 0 0 0 0 0 0 0 0 0

Radix-1
23 1 0 2 0 0 0 0 0 5 0 0 0 0

61
8 0 0

Radix-2
30

1 1 1 0 0 0 0 0 3 0 0 0
57

0 8 0 0

Merge
15 6 0 0 0 0 0 0 0 0 0 0 0 17 0

40
0 22

strlen
16 5 0

53
0 0 0 0 0 0 0 0 0 0 0

26
0 0

strcpy
16 1 0

29
2 0 0 5 3 0 0 0 0 0 0

44
0 0

2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36
bit width

All
19 4 1 8 2 4 1 2 0 1 0 0 1 11 7

33
1 4

2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36
bit width

Table 5.12: The percentage of logic blocks within operations of bit width ranging from 2
to 36. Each row adds to 100% of all logic blocks.
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bit width 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36

percentage 67 7 1 7 1 2 1 1 0 0 0 0 0 3 2 7 0 1

Table 5.13: Percentage of operations of each bit width ranging from 2 to 36. Interpreted
from Table 5.12.

The image dithering configuration has a peak at 12 bits because the multiplications

by 1/51 are done 12 bits wide. The other peaks are generally at 2, 8, 16, and (nearly) 32 bits.

Note that there are even some widths greater than 32 bits (DES-CBC, Merge). Oddly, the

cryptography configurations are the most unimodal, with DES preferring 2-bit (or maybe

1-bit) operations, and the one-way hash functions at the other extreme preferring 32-bit

operations.

The table is a bit deceiving, since at first blush it seems to recommend a granularity

of 32 bits (having the highest average, at 33%). However, the table reports percentages of

logic blocks within each size, not percentages of operations of each size. To find the latter

requires dividing by the number of logic blocks for each width and normalizing for the

total number of multi-bit operations. This exercise has been done in Table 5.13, which

dramatically puts operations of more than 2 bits in the minority as a percentage of all

operations. The reason 32-bit operations consume a large fraction of logic blocks overall is

because they use many logic blocks individually.

Of course, the results of Table 5.13 are biased by the fact that the configura-

tions were hand-coded specifically for reconfigurable hardware with a granularity of 2 bits.

Grouping operations into multi-bit runs was not a priority; and it is not possible to say

what the distribution might be if it had been.

5.4.5 Wire connections

Logical connections between Garp logic blocks are ideally made through a single

wire, but in order for that to happen, the two blocks must be in the same column (using

a vertical wire) or in the same or neighboring rows (using a horizontal wire). Some logic

block connections will need more than one hop to get from source to destination, where a

hop is defined as a traversal across a single straight piece of wire. In Garp, each additional

hop requires entering and exiting a logic block, if only through the logic block’s D path.

Table 5.14 gives the percentage distribution of number of hops for logical connec-

tions between blocks in the configurations. A logic block is considered to facilitate a hop
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DES-CBC
  31%   52%

  18%   0%

  71%

  6%   23%

MD5

  79%

  12%   10%   0%
  51%   32%   16%

SHA

  98%

  2%   0%   0%
  51%

  13%
  36%

Dither

  70%
  30%

  0%   0%
  39%   56%

  4%

Med-filter
  32%   25%   20%   23%   0%

  32%
  68%

Radix-1

  64%
  36%

  0%   0%   0%

  87%

  13%

Radix-2
  45%   46%

  0%   9%   0%

  78%

  22%

Merge

  98%

  2%   0%   0%
  47%

  12%
  41%

strlen

  100%

  0%   0%   0%   11%   27%
  63%

strcpy

  84%

  16%   1%   0%   20%   40%   40%

1 hop 2 hops 3 hops
4 or more

hops
1 hop,
V wire

1 hop,
H wire

1 hop,
G wire

All

  76%

  17%   5%   1%
  42%   27%   31%

1 hop 2 hops 3 hops
4 or more

hops
1 hop,
V wire

1 hop,
H wire

1 hop,
G wire

Table 5.14: Distribution of wire hops for each logical connection between logic blocks. The
three columns on the right break down the 1-hop case by wire class.
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22–16 15–8 7–4 3–2 1 0 1 2–3 4–7 8–15 16–22

21–16 0 0 0 0 0 0 0 0 0 0 0
15–8 0 0 0 8 44 64 28 0 0 0 0
7–4 0 4 5 13 32 82 27 3 2 0 0
3–2 0 1 1 4 14 75 13 1 8 3 0
1 0 9 9 8 2 1 1 7 4 6 0
0 0 8 5 5 4 2 1 0 0 0
1 0 0 0 0 1 17 0 0 0 0 0

2–3 0 0 0 0 0 0 0 0 0 0 0
4–7 0 0 0 0 0 0 0 0 0 0 0
8–15 0 0 0 0 0 24 0 0 0 0 0

16–21 0 0 0 0 0 0 0 0 0 0 0

(a) DES-CBC.

22–16 15–8 7–4 3–2 1 0 1 2–3 4–7 8–15 16–22

27–24 0 0 0 0 0 0 0 0 0 0 0
23–16 0 0 0 0 0 32 0 0 0 0 0
15–8 0 0 0 0 0 80 0 0 0 0 0
7–4 0 0 0 0 0 128 0 0 0 0 0
3–2 0 6 11 0 0 80 0 0 10 5 0
1 0 15 9 0 0 179 2 18 16 23 2
0 0 2 0 8 8 12 28 28 56 10
1 0 0 0 0 0 0 0 0 0 0 0

2–3 0 0 0 0 0 32 0 0 0 0 0
4–7 0 0 0 0 0 0 0 0 0 0 0
8–15 0 0 0 0 0 32 0 0 0 0 0

16–23 0 0 0 0 0 32 0 0 0 0 0
24–27 0 0 0 0 0 0 0 0 0 0 0

(b) MD5.

Figure 5.13: Connection vector plots for each of the benchmark configurations. The des-
tination logic block is always in the middle of the plot; the numbers give the count of
connections from sources at each relative position (or set of positions, usually). The source
positions within the strips marked by the lines are those from which a connection can be
made with a single hop through a vertical or horizontal wire.
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22–16 15–8 7–4 3–2 1 0 1 2–3 4–7 8–15 16–22

23–16 0 0 0 0 0 0 0 0 0 0 0
15–8 0 0 0 0 0 32 0 0 0 0 0
7–4 0 0 0 0 0 16 0 0 0 0 0
3–2 0 0 0 0 0 32 0 0 0 0 0
1 0 6 0 0 16 80 15 27 36 73 37
0 0 0 0 0 0 1 0 36 72 36
1 0 0 0 0 0 224 0 0 0 0 0

2–3 0 0 0 0 0 48 0 0 0 0 0
4–7 0 0 0 0 0 48 0 0 0 0 0
8–15 0 0 0 0 0 0 0 0 0 0 0

16–23 0 0 0 0 0 0 0 0 0 0 0

(c) SHA.

22–16 15–8 7–4 3–2 1 0 1 2–3 4–7 8–15 16–22

18–16 0 0 0 0 0 0 0 0 0 0 0
15–8 0 0 8 2 0 0 0 0 0 0 0
7–4 0 0 3 0 0 42 0 0 1 0 0
3–2 0 0 0 15 24 98 0 0 0 0 0
1 0 12 21 36 40 23 0 4 4 0 0
0 0 7 4 1 0 8 4 6 0 0
1 0 0 0 0 0 0 0 0 0 0 0

2–3 0 0 0 0 0 18 0 0 0 0 0
4–7 0 0 0 0 0 18 0 0 0 0 0
8–15 0 0 0 0 0 0 0 0 0 0 0

16–18 0 0 0 0 0 0 0 0 0 0 0

(d) Dither.

22–16 15–8 7–4 3–2 1 0 1 2–3 4–7 8–15 16–22

11–8 0 0 0 0 0 0 0 0 0 0 0
7–4 0 0 0 0 0 0 0 0 1 0 0
3–2 0 4 20 0 8 12 8 0 28 8 0
1 1 3 5 2 1 5 3 2 10 7 0
0 3 5 10 4 1 2 2 6 22 0
1 0 0 0 0 0 0 0 1 0 0 0

2–3 0 0 0 0 0 18 0 0 0 0 0
4–7 0 0 0 0 0 18 0 0 0 0 0
8–11 0 0 0 0 0 0 0 0 0 0 0

(e) Med-filter.

Figure 5.13, part 2.
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22–16 15–8 7–4 3–2 1 0 1 2–3 4–7 8–15 16–22

23–16 0 0 10 2 0 0 0 0 0 0 0
15–8 0 0 16 16 0 0 0 0 0 0 0
7–4 0 0 6 8 2 2 2 4 4 1 0
3–2 0 0 0 4 0 0 0 0 0 0 0
1 0 0 32 6 5 1 21 6 0 0 0
0 0 0 0 0 1 49 18 4 1 0
1 0 0 0 0 0 0 0 0 0 0 0

2–3 0 0 0 0 0 0 0 0 0 0 0
4–7 0 0 0 0 0 0 0 0 0 0 0
8–15 0 0 0 0 0 0 0 0 0 0 0

16–23 0 0 0 0 0 0 0 0 0 0 0

(f) Radix-1.

22–16 15–8 7–4 3–2 1 0 1 2–3 4–7 8–15 16–22

20–16 0 0 4 0 0 0 0 3 0 4 0
15–8 0 0 16 0 0 0 0 8 0 16 0
7–4 0 0 8 0 0 0 0 4 0 8 0
3–2 0 0 4 0 0 0 0 1 0 4 0
1 0 0 16 2 3 1 11 4 0 0 0
0 0 0 0 0 1 33 18 4 1 0
1 0 0 0 0 0 0 0 0 0 0 0

2–3 0 0 0 0 0 0 0 0 0 0 0
4–7 0 0 0 0 0 0 0 0 0 0 0
8–15 0 0 0 0 0 0 0 0 0 0 0

16–20 0 0 0 0 0 0 0 0 0 0 0

(g) Radix-2.

Figure 5.13, part 3.
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22–16 15–8 7–4 3–2 1 0 1 2–3 4–7 8–15 16–22

31–24 0 0 0 0 0 0 0 0 0 0 0
23–16 0 0 0 0 0 0 0 0 0 0 0
15–8 0 0 0 0 3 60 0 0 0 0 0
7–4 0 0 0 0 2 38 0 0 0 0 0
3–2 0 0 0 0 1 145 7 0 0 0 0
1 40 64 32 24 16 18 10 10 0 0 0
0 0 64 32 26 11 34 34 32 56 0
1 0 0 0 0 0 144 0 0 0 0 0

2–3 0 0 0 0 1 19 0 0 0 0 0
4–7 0 0 0 0 0 4 0 0 0 0 0
8–15 0 0 0 0 0 8 0 0 0 0 0

16–23 0 0 0 0 0 0 0 0 0 0 0
24–31 0 0 0 0 0 0 0 0 0 0 0

(h) Merge.

22–16 15–8 7–4 3–2 1 0 1 2–3 4–7 8–15 16–22

5–4 0 0 0 0 0 1 0 0 0 0 0
3–2 0 0 0 0 0 8 0 0 0 0 0
1 7 14 5 3 5 6 0 1 0 0 0
0 3 6 1 3 1 5 2 4 8 0
1 0 0 0 0 0 0 0 0 0 0 0

2–3 0 0 0 0 0 0 0 0 0 0 0
4–5 0 0 0 0 0 0 0 0 0 0 0

(i) strlen.

22–16 15–8 7–4 3–2 1 0 1 2–3 4–7 8–15 16–22

15–8 0 0 0 1 1 18 0 0 0 0 0
7–4 0 0 0 1 1 49 1 0 0 0 0
3–2 1 1 4 2 1 5 0 0 0 0 0
1 0 9 0 2 2 84 5 0 3 5 0
0 4 15 9 5 4 7 7 20 37 16
1 0 1 0 1 0 4 0 0 0 0 0

2–3 1 0 0 0 0 2 0 0 0 0 0
4–7 1 0 0 0 1 1 0 0 0 0 0
8–15 0 0 0 0 0 0 0 0 0 0 0

(j) strcpy.

Figure 5.13, part 4.
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if it passes a value unaffected from one wire to another. Registers are ignored; values may

or may not be delayed by registers. Any sharing of wires when a signal fans out from one

logic block source to multiple destinations is also not accounted for in the numbers.

As the table shows, the great majority of logical connections actually meet the

ideal of only a single wire hop, and 94% of connections are made in no more than two hops.

For what it is worth, the single-hop cases seem to be fairly evenly distributed among the

different classes of veritical and horizontal wires.

Figure 5.13 provides connection vector plots for all of the benchmark configura-

tions. These plots give an indication of the physical lengths of connections made between

logic blocks. They also provide visual verification of the claim that most connections can

be satisfied with only a single hop.

5.4.6 Memory accesses

The inherent memory access patterns of the various benchmarks are indicated in

Table 5.15. Nearly all the benchmarks operate on one or more streams. A couple of them

use circular buffers, which are contiguous blocks of memory that are read/written in stream-

like fashion, but cyclically. The MD5 configurations (Section 5.3.2) read 64 constants from

what is essentially a circular buffer, while the image dithering configuration needs a circular

buffer to hold the errors to be diffused from one scan line to the next (Section 5.3.3).

Only MD5 is forced to perform truly nonsequential accesses. As explained earlier,

the MD5 algorithm reads the next sixteen 32-bit words in a nonsequential pattern as it

updates its hash value. One can imagine loading these sixteen words from the head of a

sequential stream into the Garp array and then accessing them internally in whatever order

is needed, but there is no room in the array to do this for MD5. Consequently, these reads

are counted here as inherently non-sequential accesses.

Table 5.15 also tallies the actual Garp resources each configuration uses to access

memory: specifically, the number of hardware memory queues allocated and whether the

configuration makes independent (demand) memory accesses. Despite the fact that most

of the benchmark data is organized as streams, the majority of configurations do actually

make demand memory accesses. The most common reason is the need to read and write

more than three streams, which is the maximum possible via Garp’s memory queues. The

Radix-2 configuration (part of the radix sort pass) operates on seventeen streams total, one
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circular other memory demand
streams streams buffers memory queues accesses

configuration in out in out accesses used used

DES-CBC 1 1 – – – 2 no
MD5 – – 1 – yes 1 yes
SHA 1 – – – – 1 no
Dither 1 1 1 1 – 2 yes
Med-filter 1 (×3) 1 – – – 3 yes
Radix-1 1 – – – – 1 no
Radix-2 1 16 – – – 1 yes
Merge 8 1 – – – 1 yes
strlen 1 – – – – 0 yes
strcpy 1 1 – – – 0 yes

Table 5.15: Inherent memory access patterns for the benchmark configurations, and the
memory access resources actually used.

(bytes / array clock cycles)
memory demand memory demand
queue memory queue memory

configuration reads reads writes writes

DES-CBC 8/80 – 8/80 –
MD5 4/4 4/4 – –
SHA 4/2 – – –
Dither 4/4 8/4 1/4 8/4
Med-filter 2/1 1/1 1/1 –
Radix-1 16/1 – – –
Radix-2 8/1 – – 8/1
Merge – 8/9 8/9 –
strlen – 16/1 – –
strcpy – 16/2 – 16/2

Table 5.16: Peak memory bandwidth requirements of each benchmark configuration. The
8/80 entries for DES-CBC, for example, mean that every 80 array clock cycles the config-
uration reads/writes eight bytes simultaneously in one cycle. Cache misses or other stalls
may delay the array clock.
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input stream and sixteen output streams. While the input stream is easily delegated to

the memory queue hardware, the sixteen output streams are written irregularly, making

the writes almost indistinguishable from arbitrary demand writes. The reverse is true of

the mergesort configuration, which reads irregularly from eight input streams and writes its

output to a single memory queue.

The memory queues are not used for strlen and strcpy simply to avoid the extra

overhead cost. Similarly, the remaining third memory queue is not employed by the image

dithering configuration to avoid having to reset the queue for each scan line.

The rate at which the different configurations attempt to access memory is recorded

in Table 5.16. The four memory buses total to 128 bits, so the maximum memory bandwidth

available is 16 bytes per cycle. The radix sort and the string functions are notable for

saturating the memory buses every array clock cycle. The numbers in the table represent

attempted rates, however, not the bandwidth actually sustained by the memory system.

Although the Radix-2 configuration attempts an 8-byte write every array cycle, the write

often misses in the cache resulting in a slower actual rate. As noted earlier, all three sorting

configurations are particularly susceptible to cache misses.
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Chapter 6

Garp Retrospective

This chapter collects lessons learned and other observations about Garp with the

benefit of hindsight. Some positive aspects are considered first, followed later by weaknesses

that deserve better attention in the future. In between is a review of some of the changes

that were made to the Garp design to correct earlier flaws.

6.1 Noteworthy features

First, on the positive side, some Garp features seem deserving of special emphasis

that may not be reflected elsewhere in this thesis.

6.1.1 Processor handling of start-up, shut-down, and other particulars

One feature that turned out to be more valuable than expected is the main pro-

cessor’s ability to stop the reconfigurable array at will and access all of its data registers.

Of course, this has an obvious application in debugging, since it is then easy for a program

to single-step the array and report what is happening. What was unexpected is the extent

to which this feature can also be used during normal execution to help applications run

faster.

Assume the reconfigurable array is used to execute critical program loops. Most

loops require a certain amount of start-up and shut-down activity that cannot be ignored;

however, accomodating this overhead in a confirguration means dedicating scarce array

resources to circuits that sit idle most of the time. Because this overhead circuitry takes up

space, some loops that otherwise would fit within the array will be crowded out and have to
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The configuration can be optimized
for processing the middle of a scan
line, without overhead for handling
the ends.

The main processor can
achieve the desired
behavior at the ends by
stepping the
configuration and
manipulating the array’s
data state.

Figure 6.1: Typical processing of an image, with a configuration of the reconfigurable
hardware capable of handling only the middle of each scan line and the edges being corrected
by the main processor.

be executed back on the main processor. Worse, when everything does fit, the start-up and

shut-down circuitry inserts multiplexors into the main part of the loop, often increasing the

length of the critical path and thus slowing execution speed.

It is usually better to build the configuration without this start-up and shut-

down overhead and rely on the main processor to handle it instead. After loading a new

configuration into the array, the processor can single-step array execution for a few cycles

and adjust the array pipeline state for each step to ensure that the loop is properly started.

In the simplest cases, all that has to be done is to initialize a few registers before loop

execution is started; however, many times a loop must be stepped and adjusted for several

clock cycles to prime the pipeline. A reverse process can occur at the end of loop execution

to extract the results.

In the same way, the processor can be used to smooth over many other special

cases. A good example is an image processing application that progresses through an image

in scan-line order, as illustrated in Figure 6.1. Because the edges of an image often require

special handling, some amount of special-case circuitry is usually needed if the array is to

process an entire image from top to bottom on its own. But for anything other than the

smallest images, the great majority of time is clearly spent in the middle of the image, where

the circuitry for the edge cases is useless. The configuration will usually be more efficient

without the extra circuitry, leaving it to the main processor to take care of the edges.

On Garp, the easiest way to do that is not for the main processor to perform
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the calculation at the edges entirely itself—although that can be done—but rather for the

processor simply to tweak the configuration’s calculation by single-stepping the array near

the edges and manipulating the array’s register contents. This trick is used for the dithering

benchmark presented in Section 5.3.3, but would not be possible if the processor did not

have arbitrary access to the array registers.

6.1.2 Support for extended functions in logic blocks

More than traditional FPGAs, Garp’s logic blocks are designed with basic arith-

metic operations in mind. Although Garp supports standard table lookups, the table-lookup

modes have not been the most popular. From Table 5.10 in the previous chapter, the two

table-lookup modes are seen to account for only 27 + 11 = 38% of all logic block func-

tions, with the remaining 62% configured for one of the “higher-level” functions. The single

most frequent function mode (46%) is the carry chain mode which supports additions,

subtractions, and comparisons of two values (sometimes with a third control input). In

the image dithering application, two-thirds of the logic blocks are configured in triple-add

mode, reflecting the multiplications and divisions performed by that benchmark. Only the

cryptography applications and to some extent strcpy make major use of the table-lookup

modes.

Of course, 38% is not an insignificant fraction, and the table modes do play a role

in the control circuitry of every benchmark. The point is rather that, even on a fine-grained

array such as Garp, the arithmetic operations seem to dominate as a rule, justifying the

extra support for them in the Garp design.

6.1.3 Limited configuration turnaround

The Garp architecture includes a configuration cache but expressly denies that a

configuration can be loaded from the cache in only one or two clock cycles. It is always

anticipated that switching to a cached configuration might take several clock cycles, possible

as many as eight or ten cycles. The architecture does not enforce a delay when loading

from the cache, but the license for a delay is valuable to minimizing the area of the Garp

array.

Recalling the implementation survey in Section 4.3 and particularly the logic block

layout in Figure 4.27 (page 97), much of the design is predicated on the freedom to ignore
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configuration delays. Without that freedom, the tight tracks for distributing configuration

bits around the logic block in polysilicon would be totally unacceptable, as would the many

small pieces of circuitry involved in decoding the configuration, including notably the slow-

but-narrow decoder for the vertical output drivers visible in Figure 4.27. Very likely, parts

of the configuration storage and input multiplexors would have to be redesigned as well.

All told, it might be conservative to suppose an increase of 30 to 50% in array area. The

benefit of being able to change configurations more quickly could not justify such a cost.

6.1.4 Array access to memory

In Section 3.1.6, a case was made for giving the reconfigurable array direct access

to memory, without intervention by the main processor. The data in Section 5.4.6 confirmed

that some of the benchmark kernels depend on having maximal bandwidth to memory, the

radix sort and string functions specifically. These applications would not run nearly as fast

if memory accesses had to be routed through the main processor. The image dithering

benchmark, too, although not saturating the array’s memory buses like the others, still

makes more accesses to memory than can be sustained by the Garp main processor. Thus

it also would be somewhat hobbled if the processor were exclusively responsible for memory

accesses.

It must be emphasized that memory bandwidth alone is not the reason for any of

the reported Garp speedups. For all of the chosen benchmarks, the UltraSPARC implemen-

tation is not primarily limited by bandwidth to memory. However, when the reconfigurable

array performs a computation an order of magnitude faster than the UltraSPARC (as it

does for dithering and strlen, for example), it is only natural for memory bandwidth needs

to increase. The decision to give the Garp array wide, direct access to memory is consistent

with the expectation that it will deliver speedups.

6.1.5 Array clocking and context switches

A final important aspect of Garp is the separation of the notion of logical array

clock cycles from real time. Any reconfigurable hardware that interacts with a processor

memory system through standard caches must be prepared to deal with unpredictable delays

due to cache misses. By automatically suspending array register updates in hardware, the

reconfigurable array can be stalled and cache misses serviced completely transparently to



153

the executing configuration. This frees configurations to concentrate on the computation

itself and not on synchronization issues. Array clock cycles in Garp are the logical units of

array execution, just as instructions are units of execution in standard processors.

Context switches are a far more extreme example of decoupling array clock cycles

from real time. A preemptive context switch must be able to freeze array execution at

any stage and preserve the array’s state until the corresponding process is swapped back in

again. The array clock cycles in Garp provide clean boundaries at which array execution

can be suspended and resumed.

6.2 Corrected mistakes

Although the design of Garp went through several variations early on, a few flaws

were not realized until late in the game, precipitating some late changes to the architecture.

Three corrections are perhaps worth mentioning:

• The control blocks, which provide the reconfigurable array the ability to perform

memory accesses and stop array execution, were originally placed at the right edge of

the array instead of the left where they are now. Because the carry chains in the array

operate from right to left, the right side of the array is closest to the least significant

bits of multi-bit values. Putting the control blocks on that side was intended to leave

more room at the left for overflow handling. It should have been obvious, however,

that decisions are often made on the outcome of comparisons, and that comparison

results using the carry chain would be available only on the left side. Rather than

continue to transmit these signals all the way from one side of the array to the other,

the control blocks were moved to the left side to shorten the distance.

• At one time, the main processor did not have access to the data registers in the extra

logic blocks at the sides of the array; only the middle 16 logic blocks could be copied

to and from the processor, in the same way that only the middle 16 blocks can be the

source or destination of a memory access (Section 4.1.1). This made it inconvenient,

bordering on impossible, for the processor to perform certain start-up and shut-down

duties as discussed earlier. It also meant that context switches needed additional

special handling to save and restore those bits. The instruction set was eventually

extended to give the main processor access to the full array.
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• Currently the Garp array’s short horizontal wires (H wires) span eleven blocks and

can send a value a distance of nine blocks away, corresponding to a shift of 18 bits

(Section 4.1.3 and Section A.2.1 in the appendix). Previously, the H wires were a little

shorter and could only support a shift of up to 16 bits. It is easy to see the reason for

choosing a distance of 16 bits, since that is a common data size. What only became

clear from experience, however, is the need for the wires to be just a little longer to

provide a margin of flexibility when laying out 16-bit operations in the array.

Two other changes have come about since the first publications about Garp:

• In addition to the six logic block functions covered in Section 4.1.2, the original archi-

tecture included another for variable shifts. In this mode, 17 bits from the horizontal

wires above the logic block were treated as a 17-bit value, which was then shifted right

according to the values from the usual logic block inputs. The two least-significant

bits of the shifted value were returned as the function result. When used in concert

across a row, this mode created a one-row variable shifter.

The variable shift mode had several strikes against it, however. To start with, it was

rarely needed, and in fact never used by any of the benchmarks. Second, the hardware

for this mode did not overlap much with the other logic block functions, so it was not

cheap to include. Worse, it was not even immediately suitable for all common shift

operations. C-style right shifts, for example, required extra logic blocks and delay to

work correctly. For all these reasons, the mode was ultimately discarded. A minor

adjustment was made to the definition of select mode at the same time so that variable

shifts could be implemented in a few Garp rows, as witnessed back in Table 4.1.

• Section 4.1.5 discusses how the basic arithmetic operations can usually be done in

just the natural number of logic blocks in Garp—for example, an 8-bit comparison

can be done in exactly four logic blocks (at two bits per block). This feature makes it

easier to configure the Garp array for small-SIMD, segmented operations, such as four

adjacent 8-bit comparisons on a pair of 32-bit words. Originally, certain inequality

comparisons could not be segmented in this way. To fix the shortcoming, the operation

of the carry chain and triple-add modes had to be modified. In general, ensuring the

segmentability of arithmetic operations requires some care in the definition of the logic

block functionality connected with the carry chain.
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6.3 Weaknesses

Even with corrections, the Garp architecture is far from perfect. Some flaws in

the basic design, and the challenge of programming the device, bear scrutiny.

6.3.1 Wire network

The Garp array was intended to be expandable to larger sizes as technology im-

proves by increasing the number of rows. Previous configurations would be able to run

without modification in the same number of rows as before, merely being a smaller fraction

of the new array. Configurations filling the new, larger array would not run on older Garps,

just as software requiring Intel’s MMX extensions cannot be run on older Pentiums without

that feature.

Unfortunately, the Garp architecture’s insistence on having wires that stretch the

full height of the array makes this a difficult proposition in practice. In Section 4.3.3, a

scheme for hiding buffers within the longest wires was proposed that works for the 32-row

Garp but is not ideal. It was originally hoped that similar schemes could be used for longer

wires in larger arrays, but this was largely naive. With 64 rows it might be possible to

implement the longest Garp wires with tricks involving multiple physical wires; but at some

point it has to be recognized that signals simply cannot be sent arbitrary distances in a

single clock cycle. Wire networks in larger reconfigurable arrays need to be able to take

several clock cycles to transmit a value, presumably with registers embedded in the network

to support pipelining. As designed, Garp’s wire network is not really adequate for arrays

larger than the 32-row Garp assumed in this thesis.

Another problem with the Garp network is the shortage of resources for connecting

between horizontal and vertical wires. A logic block can often make one such connection

(using the D path) independent of the normal logic block function. In some case—for

instance, if it is not otherwise occupied—it can make two connections, although these are

generally in the minority. A connection between a horizontal and a vertical wire in either

direction can be called a turn.

One turn per logic block is often sufficient for datapaths created in a configuration

because of a tendency in datapaths toward mostly orthogonal connections without turns.

When two values are needed as inputs to an addition, for example, the operands can usually

be brought straight over vertical wires without any horizontal shifting being needed across
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the columns. For control circuitry, however, and for some irregular datapaths, one turn per

logic block is not always enough. Arranging and routing the control circuitry in the bench-

mark configurations has sometimes been a kind of puzzle, requiring that logic blocks with

connections between them be placed in vertical and/or horizontal relationships to conserve

the available turn resources. Automatic place-and-route tools would be hard pressed to

duplicate this effort; and, fittingly, no commercial FPGAs are so constrained. Again, the

need for a better wire network in Garp is apparent.

6.3.2 Memory bottleneck

The Garp reconfigurable array accesses memory over its four memory buses, which

stretch across all the array rows. With arrays of more than 32 rows, access to memory

becomes more problematic, for two reasons: First, a larger array implies a need for more

bandwidth to memory to avoid having memory bandwidth be too much of a bottleneck

by contrast. This entails a multiplying of the memory buses and potentially the memory

queues as well. Currently, the Garp architecture permits any memory bus to be matched

with any memory queue, with a crossbar bridging the two groups. Whether this would

continue to be an attractive arrangement is uncertain.

A bigger concern, though, is the same one that arose for the Garp wire network.

Because the memory buses span the entire array, if the array is made much larger, it becomes

impossible to transmit a value over a memory bus in only one clock cycle. If the memory

buses are pipelined as was proposed for the network wires, they then cease to be buses and

become something else less intuitive and perhaps more difficult to work with. A solution to

the dilemma is not provided here, other than to suggest that the discussion in Section 3.1.6

concerning the array’s interface to memory may need to be revisited.

6.3.3 Programming experience

The basic Garp development tools presented in Section 5.2 were used to create

all of the benchmark configurations. These tools have been enough to get the job done

but do not provide an especially attractive programming environment for someone used to

writing software in a high-level language. Describing a configuration at the primitive level

of the Garp configuration assembler (the configurator) is actually a little more laborious

than coding in normal assembly language, already considered a labor of last resort by most.
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The simplest of the Garp configurations took about a day to create and debug, while some

took several days. Whether better Garp tools could be constructed that would make this

task easier is a nonobvious question; it may be that they could. Better tools for creating

configurations by hand were never high on the list of priorities for this project.

To investigate compiling from a high-level language like C to a hybrid reconfig-

urable machine, Callahan has created a C compiler for Garp [11, 12, 13]. His garpcc

automatically chooses kernels within a program to implement in the reconfigurable array,

then creates confirgurations for those kernels and integrates them with the rest of the pro-

gram, which is compiled for Garp’s main MIPS processor. Callahan’s compiler translates

its chosen kernels into configuration descriptions that are fed to the previous low-level tools,

in the same way that many C compilers invoke an assembler as the final compilation stage

before linking.

The compiler is still in development, and few complete programs have been tested

with it so far. One of these is a program for wavelet image compression; Table 6.1 summa-

rizes the performance of this program when compiled for Garp and for the UltraSPARC-

1/170 that was used for comparison purposes in Chapter 5. As the table shows, garpcc is

able to eke out a 27% speedup for Garp relative to the UltraSPARC.

There is no expectation that the Garp C compiler will match the performance

possible with hand-coded configurations. Nevertheless, the compiler has the distinct advan-

tage of being able to consider many more program loops than can reasonably be done by

hand, and in the space of only a few minutes, not days. The full extent of the performance

achievable with the compiler remains to be seen. However, unless the results turn out to be

far better than expected, the difficulty of programming Garp will continue to be a weakness

of the system.
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loop number of percentage 167 MHz 133 MHz
number executions of total time SPARC Garp ratio

1 1 22.1 4.6 ms 0.50 ms 9.2
2 320 8.5 1.77 1.00 1.77
3 774 3.7 0.76 0.45 1.69
4 1 5.7 1.18 0.50 2.4
5 3262 5.7 1.18 1.38 0.86
6 448 10.1 2.1 1.35 1.56
7 448 5.5 1.15 0.94 1.22
8 448 14.9 3.1 4.4 0.70
9 448 6.7 1.39 1.04 1.34

total of 9 loops 82% 17.2 ms 11.6 ms 1.49
other code 17 3.6 ms 4.8 ms 0.75
total 100 20.8 ms 16.4 ms 1.27

Table 6.1: Results from compiling a wavelet image compression program to both the Ul-
traSPARC and to Garp using Callahan’s garpcc. The Garp compiler extracts nine loops
for implementation on the reconfigurable array. Execution times for a loop combine all
invocations of the loop together. Time percentages are with respect to the UltraSPARC,
which is taken as the default system.
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Chapter 7

Conclusions

7.1 Summary of contributions

The main contributions presented in this thesis are:

• An investigation of the basic issues for integrating a reconfigurable unit into a tra-

ditional, general-purpose processor. It is recommended that a reconfigurable unit

be attached as an on-chip coprocessor outside the immediate processor pipeline, and

that it be geared to executing whole program loops, with its own independent path to

memory. The implications of cache miss stalls, context switching, and virtual memory

page faults on the design are also addressed.

• An evaluation of how certain reconfigurable hardware parameters such as granularity

and preferred arithmetic style (bit-serial, bit-pipelined, or bit-parallel) impact the

reconfigurable unit’s efficiency. It is found that, although bit-pipelined arithmetic is

faster for some operations such as additions and multiplications, bit-parallel forms are

more robust at handling a wider range of operations and require fewer register bits

for data pipelining. Support for building multipliers in the reconfigurable hardware

is also considered, with the conclusion that—assuming fast carry chains are already

embedded in the reconfigurable hardware—additional hardware support for three-

input adders allows denser multipliers without a major sacrifice in delay or chip area.

• The detailed specification of Garp, a prototype combined processor/reconfigurable

architecture responding to the previous issues. Garp is the first design to fully adapt

a reconfigurable computational unit to the conventions of standard general-purpose
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systems. Unlike other reconfigurable hardware, Garp fixes the clock within its re-

configurable array and supports a notion of logical array clock steps separate from

real time. Also fairly novel is the introduction of control blocks at one edge of the

reconfigurable array to give the array control over memory accesses.

• A study of a potential VLSI implementation of Garp, including some ideas about

the configuration cache and its effect on logic block layout. A proposal to verify the

integrity of a configuration while loading it from external memory is believed to be

an innovation. The study demonstrates the feasibility of implementing Garp, with

estimates for area and clock speed.

• A test of the fitness of the Garp design through the benchmarking of an assortment of

example applications. Execution times on Garp are measured against a comparable

UltraSPARC, showing an impressive Garp advantage for at least certain problems. For

three applications, Garp is determined to be faster than the UltraSPARC by factors

of 17, 19, and 43, respectively. Based on the benchmark results, a brief analysis is

made of Garp’s effectiveness for different types of applications.

• Statistics extracted from the benchmark configurations that may help with the design

of other Garp-like reconfigurable units. Among other things, the statistics show that

arithmetic functions are more frequently used than table-lookup functions, and that

straight connections through a single wire account for three-quarters of all communi-

cations between logic blocks.

• A retrospective of Garp’s highlights and weaknesses, as well as some corrections that

were made to the architecture over time.

7.2 Application niche

With speedup factors on some benchmarks in the high teens (19 times faster for

DES encryption, 17 times for image dithering), and exceeding as much as 40 for the median

filter benchmark, it is clear that a Garp-like reconfigurable unit would be a boon for certain

applications. Overall experience with the benchmarks (summarized in Table 5.3, page 128)

suggests that the applications most likely to be successful are those with ample parallelism
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beyond simple ILP (instruction-level parallelism). Even then, applications limited to only

ILP have sometimes run three to four times faster on Garp than on the UltraSPARC 1/170.

Reconfigurable hardware is often touted as being best at “bit-manipulation” func-

tions, with cryptography and compression offered as examples. While there is no question

that fine-grained reconfigurable hardware can be faster at bit-level operations than normal

processors, Garp has not experienced the same order-of-magnitude speedups on cryptog-

raphy functions as it has with some of the more arithmetic-oriented applications such as

image dithering.

Encryption algorithms, by their nature, are designed to maximize the dependency

between the original plaintext and its encrypted form, so that, ideally, changing one bit in

the original causes a change in half the bits in the encrypted encoding. Called an avalanche

effect by cryptographers, this maximizing of dependencies between operations has the side

effect of minimizing the algorithm’s parallelism. An encryption method can be modified to

be more parallel only at the expense of being less secure, which is the difference between the

CBC and ECB modes for the DES encryption algorithm (Section 5.3.1). A similar property

applies to compression as well: a compression algorithm can be made more parallel only by

sacrificing some compression quality.

In the absence of parallelism, reconfigurable hardware can only gain a speedup

by improving the latency of operations. For pure bit-manipulation functions, this might

lead to a factor of three or four improvement in speed, as shown for example by DES in

CBC mode. Most real algorithms are not purely based on bit-manipulation, however. The

one-way hash functions MD5 and SHA, for instance, include 32-bit additions which the

Garp array cannot do any faster than the UltraSPARC. Consequently, the hash functions

achieve a speedup of only a factor of two or three on Garp.

The greatest triumphs for reconfigurable computing have come from applications

with both bit manipulation and tremendous parallelism. A leading example is genome

(DNA) pattern matching, for which machines built with FPGAs have been compared fa-

vorably to Cray supercomputers. The fine granularity of the FPGAs allows them to pack in

a large number of the small operators needed for genome matching, thus exploiting a large

quantity of parallelism inherent in the problem. Without the parallelism, the reconfigurable

machines could not be as successful.

In Section 2.1.2, program parallelism was divided into three categories: ILP, inter-

iteration or data parallelism, and thread parallelism. Although reconfigurable hardware
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is freely able to exploit all three forms, thread parallelism is not a factor in any of the

benchmarks selected. The reasons for this have been: (1) Garp’s array is often not large

enough for one loop, much less more than one; (2) memory access conflicts between mul-

tiple threads would be difficult to arbitrate within the array; and finally, (3) finding good

examples by hand can be tedious. With a larger reconfigurable unit, it would be a good

topic of research to examine whether automatic compilation could be successful at finding

simultaneous threads of execution to move into the reconfigurable array.

Another significant technique that has not been tested on Garp is run-time spe-

cialization for loop invariants. A loop invariant is a value that is constant for the duration

of a loop. Run-time specialization generally entails creating a template configuration with

parts that are changed based on values known during execution. Before the configuration

is loaded into the reconfigurable unit, the template would be copied and edited in mem-

ory by the main processor for the appropriate constants. Run-time specialization is often

useful for pattern matching problems, as demonstrated for genome pattern matching on

the PeRLe-1 [48] and for text keyword search on another FPGA board [25]. Use of the

technique on Garp has been left as an open exercise.

7.3 Architectural alternatives

Before rushing out to adopt a reconfigurable unit, it is important to recognize there

may be better ways to use the same chip area to accelerate applications. This research has

not tried to measure Garp’s performance against other proposals, relying instead on a

commercial superscalar processor as a common baseline for comparison. Where warranted,

direct comparisons between reconfigurable units and other alternatives is left for future

research.

Vector units are a promising idea being studied in the IRAM project at the Univer-

sity of California, Berkeley [45]. Although long relegated to the realm of supercomputers,

vector processors are emerging as another option for using new quantities of transistors

to accelerate software. Vector units achieve speedups by capitalizing exclusively on data

parallelism. Since reconfigurable units often get their best speedups from the same sources,

vector processors are a clear rival to reconfigurable computing. Commercial processors have

already begun incorporating some vector capabilities, in the form of small-SIMD instruc-

tions such as VIS for SPARCs and MMX for Intel Pentiums.
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One potential advantage reconfigurable hardware has over vector units is the ability

to exploit thread parallelism. Reconfigurable hardware can also be better when independent

loop iterations share significant common subexpressions, since vector processors often find

it costly to share information across iterations. (This is true, for example, for the image

median filter used as a benchmark in Chapter 5.) Again, exactly which types of software

do better with each system will have to be deferred to future study.

Either way, building a faster compute engine may simply shift the bottleneck to

the memory system. As already noted, Garp’s reconfigurable array could not grow much

larger without a reworking of the memory interface. Berkeley’s IRAM project has been

very attentive to the interface between their vector unit and memory, tailoring the vector

unit expressly to take advantage of properties of the memory system. In contrast, the

reconfigurable computing community does not have a coherent model for memory. Many

reconfigurable systems have adopted ad hoc memory banks, requiring explicit partitioning of

data into separate banks. While there have been attempts to automate this partitioning [5,

21], experience has shown it to be a hard problem for compilers to solve. For a general-

purpose platform, a better model will be needed that is compatible with high-level languages

and compilers.

7.4 Programming challenge

The challenge of programming reconfigurable devices is a serious obstacle. Cre-

ating configurations by hand is at least as difficult as programming in assembly language,

although this might be due as much to the limitations of the development tools as to the

actual hardware itself. To provide a better programming environment, many experimental

compilers—too many to list here—have been developed for nonstandard variants of a high

level language, usually a version of C. A few compilers actually accept pure standard C as

input. Besides the Garp compiler created by Callahan (Section 6.3.3), standard C compilers

have been described by Jantsch et al. [39] and Peterson et al. [62]. The work by Weinhardt

and Luk to adapt vectorizing compiler techniques to reconfigurable hardware is probably

also worth mentioning [77].

Even so, there is a large gap between what can be accomplished by hand and what

has been demonstrated so far with automatic compilation. While it is clear that compil-

ers need to be improved, part of the solution will have to involve making reconfigurable
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hardware more amenable to compilation.

At this date, vector processors can leverage off of decades of experience with vec-

torizing compilers. Another advantage enjoyed by vector systems is the ability to scale up

with more hardware without the need for software to be recompiled. A vector operation

of length N can be executed by one functional unit in N steps, or by N functional units

simultaneously in one step, or by some other number of functional units in between. As long

as the vector lengths in applications are long enough, doubling the number of functional

units in a vector processor cuts execution time approximately in half without any change

to the software.

Recall that this valuable scaling property is exactly what is obtained by the vir-

tualizing of streaming reconfigurable hardware described in Section 2.5.3 and exhibited by

PipeRench. In fact, because PipeRench targets much the same data-parallelism as vector

processors, it is not immediately obvious to what extent the differences between them re-

ally matter. A thorough contrasting of the two approaches would be another good research

topic.

Normally, as with Garp, increasing the size of a reconfigurable unit will not lead

to a performance increase for an existing program unless a new configuration is generated

to utilize the expanded hardware. Assuming at best the program has been compiled from a

high-level language with a good compiler, the original source code will have to be recompiled

at a minimum. To maintain top performance, each processor implementation would require

its own collection of compiled executables, an unattractive proposition for software suppliers.

More likely, old software would be upgraded for newer processors only irregularly, causing

the reconfigurable unit to be perpetual underutilized.

Other than PipeRench-style virtualization, the only solution to this problem would

seem to be some kind of just-in-time compilation (as is frequently used for Java programs,

for example). Even if this is possible, substantial work remains to be done on compilers for

reconfigurable hardware before just-in-time compilation can be seriously contemplated.

7.5 Outlook

All told, the results presented in this thesis indicate considerable promise for the

integration of a reconfigurable device into future microprocessors. If a reconfigurable unit

is truly to become a familiar object in mainstream processors, the reconfigurable hardware



165

itself will need to be specifically designed for the task and not just a clone of current

FPGA chips. It is believed the Garp architecture represents an advance in this direction.

Nevertheless, serious shortcomings remain that may hinder the acceptance of such a device

if creative remedies cannot be found. It can be hoped that further research will continue

to address these issues and ultimately clarify whether reconfigurable computing is the best

model for the future or if that title belongs to some other style of computing technology.
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Appendix A

The Garp Architecture

A.1 Introduction

The Garp processor architecture combines an industry-standard MIPS processor

with a new reconfigurable computing device that can be used to accelerate certain compu-

tations. Figure A.1 shows the organization of this architecture at the highest level. The

core of Garp is an ordinary processor supporting the MIPS-II instruction set. Added to this

is a device called a reconfigurable array, which is a two-dimensional array of small comput-

ing elements interconnected by a network of wires. Garp’s reconfigurable array somewhat

resembles field-programmable gate arrays (FPGAs) available from Xilinx, Altera, and other

manufacturers.

Each computing element in the reconfigurable array can perform a simple logical

or arithmetic operation on operands 2 bits in size. Larger computations are achieved by

aggregating these small elements into larger computational circuits. The function of each

array element and the connections between the elements are determined by a configuration

of the array, which is loaded under the direction of the main processor. The array’s con-

figuration can be changed as often as desired, allowing the array to be applied to different

pieces of a computation over time.

Use of the reconfigurable array is controlled exclusively by the program executing

on the main processor. Although any program can execute entirely on the main processor

without referencing the reconfigurable array at all, certain computations can be completed

faster by the array than by the main processor. Thus it is expected that for certain loops

or subroutines, programs will switch execution temporarily to the array to obtain a speed
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Figure A.1: Basic organization of Garp.

advantage.

This document defines the Garp architecture by detailing Garp’s extensions to the

MIPS-II architecture. Documentation for the MIPS-II architecture can be found elsewhere.

The reconfigurable array itself is described first in Section A.2, after which Section A.3

covers the integration of the array with the main processor and memory system.

A.2 Reconfigurable array

The core of the reconfigurable array is a two-dimensional matrix of small processing

elements called blocks (Figure A.2). One block on each row is known as a control block, and

the rest of the blocks are logic blocks. The number of columns of blocks is fixed at 24. The

number of rows is implementation-specific, but can be expected to be at least 32.

The basic “quantum” of data within the array is 2 bits. All wires are organized in

pairs to transmit 2-bit quantities, and logic blocks operate on these values as 2-bit units.

Operations on 32-bit quantities thus generally require 16 logic blocks.

As Figure A.1 shows, the array has access to the standard memory hierarchy of the

main processor. Four memory buses run vertically through the rows for moving information

into and out of the array (Figure A.2). During array execution, the memory buses are used

for moving data to and from memory and/or the main processor. For memory accesses,
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array blocks are connected by an internal wire network (not shown).

Figure A.3: Internal wiring within the array (independent of the memory buses). Here each
arrow represents multiple physical wire paths.
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transfers are limited to the central portion of each memory bus, corresponding to the middle

16 logic blocks of each row. For loading configurations and for saving and restoring array

state, the entire bandwidth of the memory buses is used.

The memory buses are not available for moving data between array blocks; instead,

an internal wire network provides connections between blocks. Wires of various lengths run

orthogonally vertically and horizontally. Figure A.3 summarizes the available wire paths.

Vertical wires can be used to communicate between blocks in the same column, while hori-

zontal wires can connect a block to others in the same row or in the next row below. There

are no connections from one wire to another except through a logic block. However, every

logic block includes resources for potentially making one wire-to-wire connection indepen-

dent of its other obligations.

In addition to performing a small computation, each logic block can hold a few

bits of data in registers. These data registers are latched synchronously according to an

array clock, the frequency of which is fixed by the implementation. No relationship between

the array clock and the main processor clock is required, although it is intended that the

two clocks be the same. Like in the main processor, the array’s clock governs the progress

of a computation in the array.

Each logic block can implement a function of up to four 2-bit inputs. Operations on

data wider than 2 bits can be achieved by adjoining logic blocks along a row. Construction

of multi-bit adders, shifters, and other major functions along a row is aided by hardware

invoked through special logic block modes. In particular, a fast carry chain runs right-to-left

across each row to facilitate large adders and comparators that execute in a single array

clock cycle. Since there are 23 logic blocks per row (the leftmost block on each row being

a control block), there is space on each row for an operation of 32 bits, plus a few logic

blocks to the left and right for overflow checking, rounding, control functions, extended data

widths, or whatever is needed.

Figure A.4 shows the main data paths through a logic block. Four 2-bit inputs

(A, B, C, and D) are taken from adjacent wires and are used to derive two outputs. One

output is calculated (Z), and the other is a direct copy of an input (D). Each output value

can be optionally buffered in a register, after which the two 2-bit outputs can be driven

onto as many as three pairs of wires leading to other logic blocks. The logic block registers

can also be read or written over the memory buses.

The next few subsections cover the core array architecture in more detail: first
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the inter-block wire network, then the data paths within the logic blocks, and finally the

available logic block functions (illustrated in Figure A.4 as a nondescript box). Discussion

about the control blocks and the memory buses are deferred until the integration of the

array with the main processor is covered in Section A.3.

A.2.1 Internal wire network

Internal wires run vertically and horizontally within the array for moving data be-

tween logic blocks. All wires in the network are grouped into pairs to carry 2-bit quantities.

Each pair of wires can be driven by only a single logic block but can be read simultaneously

by all the logic blocks spanned by the pair. The wire network is passive, in that a value

cannot jump from one wire to another without passing through a logic block.

The internal wires are divided into three groups: the vertical wires (also called

V wires), the global horizontal wires (G wires), and the local horizontal wires (H wires).

Wires running horizontally between logic block rows are either global (G wires) or local

(H wires). The G wires span the entire 24-block width of the array, while the H wires

nominally span exactly 11 blocks. Only the V wires run vertically and come in a range of

lengths.

The pattern of horizontal wires is not the same as that of the vertical wires, so the

vertical and horizontal dimensions of the array are not symmetric. This asymmetry is due

to the preference for aligning multi-bit operations across rows and not columns. The three

categories of wires (V, G, and H) are described in turn below.

Vertical wires (V wires)

Each column of array blocks has a set of vertical wires (V wires) for making

connections among the blocks in that column. Because the number of rows in the array is

not strictly fixed, the amount of vertical wiring available depends on the number of rows

a configuration has. Figure A.5 illustrates the patterns of vertical wires for configurations

with 8, 16, and 32 rows. Each V wire spans a specific set of blocks, any one of which can

be configured to drive the wire. All logic blocks spanned by a wire can read from that wire

simultaneously. By configuring the vertical wires of several columns in concert, multi-bit

values are easily moved among array rows.

Each pair of wires has a nominal length, shown along the tops of the subfigures in
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16 444488∞

(a) Vertical wires for 8 rows.

161632 444488∞∞

(b) Vertical wires for 16 rows.

(c) Vertical wires for 32 rows.

1616323264 444488∞∞∞

Figure A.5: The vertical wires (V wires) for arrays of various sizes. The boxes represent
a single column of the array. Each line drawn actually represents a pair of wires (2 bits).
Each wire pair can connect to all of the blocks it spans vertically. The numbers at the top
give the nominal lengths of different wires.
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16 444488∞

(a) Vertical wires for 8 rows.

161632 444488∞∞

(b) Vertical wires for 16 rows.

(c) Vertical wires for 32 rows.

1616323264 444488∞∞∞

Figure A.6: Twisting of the vertical wires to obtain a recursive structure. Compare with
Figure A.5. Note that the pattern of vertical wires for an 8-row array is repeated in the
upper and lower 8 rows of a 16-row array, and the 16-row pattern is in turn repeated in the
upper and lower halves of a 32-row array.
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Figure A.5. Except for some wires with nominally infinite length (global vertical wires), the

nominal lengths of wires are all powers of 2. The actual length of a wire can be shorter than

its nominal length if the wire would extend above the topmost row or below the bottommost

row (or both). Thus although a 32-row array includes wires with nominal length 64, no

such wire is longer than 32 blocks in reality. The same obviously applies for the global wires

labelled as having infinite length.

Each doubling in the number of rows merits an increase in the number of wire

tracks, as seen in Figure A.5. An array of 8 rows has wires up to a nominal length of 16,

and one global wire pair (wires of infinite length). An array of 16 rows adds wires with

nominal length 32, and one more global wire pair. Each successive doubling adds three new

wire tracks, one of which is a global wire pair. An array of 64 rows has wires with nominal

lengths up to 128, as well as 4 global wire pairs.

At each logic block, every vertical wire to which the block could connect has

assigned to it a unique index that identifies the wire from that logic block. A configuration

uses these indices to specify the vertical wires to which a block connects. The assignment of

indices to wires is based on a peculiar twisting of the wires illustrated in Figure A.6. (This

twisting gives the vertical wires a recursive structure, a property which can also be exploited

to improve the efficacy of the configuration cache introduced in Section A.3.1.) Numbers

are assigned to wires according to how close the wire is to the logic block in Figure A.6.

The closest wire is assigned index number 0, the next closest number 1, and so on. Note

that, because of the twisting, a wire’s number can change from one logic block to another.

The assignment of indices is therefore different for each logic block.

There can be at most one driver for each V wire. Configurations are checked when

they are first loaded to ensure that this requirement is met. Configurations failing this test

cannot be loaded.

Global horizontal wires (G wires)

Unlike the vertical wires, which are always associated with only a single column of

array blocks, the G and H wires exist between rows and are thus accessible by logic blocks

in the rows above and below the wires (Figure A.7). A horizontal wire can be read from

both above and below the wire, but it can be driven only by a logic block in the row above

the wire. Thus, a horizontal wire can be used to communicate among the columns of a
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∞

11

Figure A.7: The horizontal wires between two rows. Again, each line actually represents a
pair of wires (2 bits). There is a full set of pairs of length 11 (H wires), and four 2-bit buses
that span the entire width of the array (G wires). Each wire pair can be read by all of the
blocks it spans horizontally, from logic blocks both above and below the wires.

single row, or from a logic block in one row to a different column in the row immediately

below. This bias favors computations that proceed downward from one row to the next.

The G wires are the ones in Figure A.7 with nominally infinite length. A G wire can

be driven by any logic block in the row above the wire. As with the V wires, a configuration

that has more than one driver for a G wire cannot be loaded. Although Figure A.7 shows

the G wires as spanning the control blocks in the leftmost column of the array, control

blocks cannot examine or drive the G wires (Section A.3.2).

Local horizontal wires (H wires)

The remaining wires in Figure A.7 are H wires, all with nominal length 11. Like

the G wires, each H wire can be driven by a logic block from above the wire and can be

read by any block above or below the wire. Figure A.8 shows the logic blocks reachable via

an H wire when the wire is driven by the logic block centered above the wire.

Unlike the other two wire categories (V and G), the H wires are unique in that there

are limited options for choosing which logic block drives each H wire. For each row, a single

choice is made that determines a unique driver for all the H wires immediately below that

row. Figure A.9 illustrates the three options available to each row. The default is for every

H wire below the row to be driven from the center as in Figure A.8. Alternatively, every
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Figure A.8: The logic blocks reachable
via an H wire driven from the center.

(a) Driven from the center.

(b) Driven from the left end (shift right).

(c) Driven from the right end (shift left).

Figure A.9: The three options for driving
the H wires below a row.

H wire below the row can be driven from near the left end of the wire (Figure A.9(b)); or

every H wire below the row can be driven from near the right end of the wire (Figure A.9(c)).

Which of the three options will be used for driving the H wires across an entire

row is determined by the control block at the end of the row. Because the choice of driver

is made for all wires along a row in concert, every H wire automatically has exactly one

driver. It is not possible for a configuration to specify more than one driver for any H wire.

A.2.2 Logic block configurations

The principle data paths within a logic block are depicted in Figure A.4. A logic

block selects up to four 2-bit inputs, A, B, C, and D, from among the wires at hand, and

performs a logical or arithmetic function on these inputs to generate the output value Z.

This value is optionally buffered in an internal register and then driven onto as many as

three adjacent wire pairs leading to other logic blocks. At the same time, the original D

input can also be optionally buffered and driven onto any of the same wire pairs.

A logic block can drive output values simultaneously onto exactly one of the V wire

pairs, plus one of the G wire pairs, plus one of the H wire pairs. It is not possible for a
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64

A in

58

A′

56

B in

50

B′

48

C in

42

C′

40

D in

34

mx

32

32

lookup table(s)

16

mode

13

Z

12

D

11

H

10

G

9

V

8

G out

5

V out

0

Figure A.10: Logic block configuration encoding. 64 bits of configuration state are needed
for each active block. The A′, B′, C′, mx, lookup table, and mode fields together determine
the logic block function (Section A.2.3).

[63..58] A in

000000 A = 00 (binary)
000001 A = 10 (binary)
000010 A = internal Z register
000011 A = internal D register
010000 A = V wire pair 15

...
...

011111 A = V wire pair 0
100000 A = leftmost H wire pair above

...
...

101010 A = rightmost H wire pair above
101100 A = G wire pair 3 above

...
...

101111 A = G wire pair 0 above
110000 A = leftmost H wire pair below

...
...

111010 A = rightmost H wire pair below
111100 A = G wire pair 3 below

...
...

111111 A = G wire pair 0 below

Figure A.11: Configuration encoding for logic block inputs. The four inputs, A, B, C, and
D, have identical encodings.



189

[12] Z

0 suppress latching of Z register; output Z directly
1 latch Z register every cycle; output Z register

[11] D

0 suppress latching of D register; output D directly
1 latch D register every cycle; output D register

[10] H

0 Hout = Z
1 Hout = D

[9] G

0 Gout = Z
1 Gout = D

[8] V

0 Vout = Z
1 Vout = D

[7..5] G out

000 no output to G wires below
100 output Gout to G wire pair 3 below
...

...
111 output Gout to G wire pair 0 below

[4..0] V out

00000 no output to V wires
10000 output Vout to V wire pair 15

...
...

11111 output Vout to V wire pair 0

Figure A.12: Configuration encoding for logic block registers and outputs.
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single logic block to drive more than one V wire pair, more than one G wire pair, or more

than one H wire pair. A logic block can drive any one (or none) of the V wire pairs at hand,

and can drive any one (or none) of the G wire pairs below the block (but not above). As

stated in the previous section, every logic block drives one H wire pair below, in a pattern

across each row that is selected by the control block at the end of the row. In each direction

(V, G, and H), the output can be selected from either the Z or the D result.

For each logic block, 64 bits of internal configuration state determine the active

configuration of that block. The configurable elements of a logic block include the sources

of the inputs, the function performed on those inputs, the operation of the registers, and

the destinations for the outputs. Figures A.10 through A.12 detail the encodings of a logic

block’s configuration state.

Figure A.4 shows that a logic block’s registers can be read from or written to the

memory buses. However, this path is not under the control of the logic block itself and

so is not represented in the logic block configuration. Transfers over the memory bus are

instigated by the main processor and/or by the control block at the end of each array row

(Section A.3).

Note that if the logic block function does not require all four inputs, the D path

can be used as a completely independent path—for example to route and/or buffer a value

between wires (Figure A.13). Many of the available logic block functions ignore the D input,

leaving it free for this purpose.

In addition to selecting among the internal wires, any of the A, B, C, or D inputs

can be set to a constant. The supported constant values are binary 00 and 10. Binary

values 01 and 11 are not provided because they can be synthesized from the other two in

most cases.

The outputs of the internal registers can also be connected back as logic block

inputs, as is illustrated for the Z register in Figure A.14. A notable application of this

feature is to use the D path to buffer an input or the function output for an extra cycle.

Figure A.15 shows how an input can be delayed by connecting the D register output to

one of the function inputs. Conversely, in Figure A.16 the D path is tied to the Z register

output to delay the Z result one cycle.

Each register can operate in either of two modes. If a register is used as a buffer, it

automatically latches a new value every clock cycle. Alternatively, a register can be bypassed

on output, in which case it never latches except when it is written to via a memory bus.
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logical or
arithmetic
function

clocked
register

2

222

2

2

A B C

Zreg

Z

2

D

clocked
register

2

2Dreg

logical or
arithmetic
function

clocked
register

22

2

2

B C

Zreg

Z

2

D
A=Zreg

Figure A.13: Use of the D input as a
completely separate path for routing or
copying.

Figure A.14: Any of the A, B, C, or
D inputs can be taken from the internal
registers.

The input side of a bypassed register is thus effectively decoupled from the logic block. Note

that this implies, for instance, that the registers in the examples of Figures A.14 and A.16

could not be bypassed on output, or else they would cease to act as buffers.

From the perspective of the memory buses, a bypassed register will hold a value

written to it until it is updated again over a memory bus. By connecting the output of

such a register to a logic block input, a value latched from a memory bus can be used

immediately in the logic block function. Figure A.17 demonstrates the use of both internal

registers for holding memory bus inputs in this way.

A register selected as a buffer can be written to over a memory bus too, in which

case the memory bus value supercedes any internal value for that clock cycle. The value

written from the memory bus will be subsequently overwritten in the next clock cycle.

Figure A.18 gives a more detailed view of the logic block internal paths.
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logical or
arithmetic
function

clocked
register

clocked
register

2

222

2

2

2

A B D

Zreg

C=Dreg

Z

2

logical or
arithmetic
function

clocked
register

clocked
register

222

2

2

22

A B C

Zreg

Dreg

Z

D=Zreg

Figure A.15: Delaying one logic block input
using the D path.

Figure A.16: Delaying the Z output using
the D path.

logical or
arithmetic
function

registerregister

2

2

2 2

C

A=Zreg B=Dreg

Z

2

memory
bus in

Figure A.17: Values read over the memory buses can be latched into either internal register
and used immediately as function inputs within the logic block.
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 any
adjacent
wire pair

2

 any
adjacent
wire pair

2

 any
adjacent
wire pair

2

 any
adjacent
wire pair

2C2B2A

HoutVout

any adjacent
V wire pair

 H wire pair
 selected by
control block

any G wire
pair below

Figure A.18: A more complete logic block diagram.
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mode mx
[15..13] [33..32]

000 D′ table mode
001 01 split table mode
01k 00 select mode (k = 0 suppresses shifts in)
01k 01 partial select mode ”
10k result carry chain mode (k = 0 suppresses carry in)
11k result triple add mode (k = 0 suppresses shifts, carries in)

Figure A.19: The function mode encodings. For many modes, bit k (bit 13) determines
whether shifts and carries in are to be suppressed.

A.2.3 Logic block functions

This section details the computational functions that a logic block can perform.

The main inputs to this function are the four values A, B, C, and D, each of which is 2 bits

in size. The primary output is Z, also 2 bits.

In addition to the primary ones, several miscellaneous inputs and outputs are

associated with specific logic block functions. Most of these extra connections are to a

block’s nearest leftmost and rightmost neighbors to support multi-bit functions built out of

multiple logic blocks along a row. Details about these extra inputs and outputs are given

below as each function mode is reviewed.

A logic block’s function is determined by several fields in the active configuration—

the A′, B′, C′, mx, lookup table, and mode fields (Figure A.10). The mode and mx fields

together select among the six possible function modes (Figure A.19). Each mode is defined

below. Most modes make some use of the lookup table, although some do not. In all modes,

the A′, B′, and C′ fields choose some form of initial perturbation of the corresponding inputs.

Table mode

Table mode is the basic mode for performing simple logical functions, as shown in

Figure A.20. After each input passes through a crossbar function, a table lookup implements

an arbitrary bitwise logical operation on the four inputs to give the result. Table mode is

selected when the configuration’s mode field is 000 (binary).

The operation of the crossbars is illustrated in Figure A.21. As its name implies,

each crossbar allows each of its 2 output bits to be selected independently from either of

its input bits. There are four possibilities: pass the incoming bits through unperturbed,
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dual 4-input table lookup

22

B C

2

D

crossbar crossbarcrossbar

2

A

crossbar

Z

2

22 2 2A′ B′ C′ D′

Figure A.20: Table mode (mode = 000). The
mx field selects the crossbar function for D ′.

A0A1

A0′A1′

[57..56] A′

00 A′ = A0A0

01 A′ = A0A1

10 A′ = A1A0

11 A′ = A1A1

Figure A.21: The crossbar functions
and encoding.

32

Z bit

16

1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 ←− A′ bit
1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 ←− B′ bit
1 1 1 1 0 0 0 0 1 1 1 1 0 0 0 0 ←− C ′ bit
1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 ←− D′ bit

Figure A.22: Interpretation of the lookup table in table mode. The lookup table function f
takes 4 input bits and returns a single output bit. Listed underneath each table entry is
the pattern of input bits corresponding to that table output. The 2 bits of Z are calculated
independently using the same function: Z1 = f(A′

1, B
′

1, C
′

1, D
′

1) and Z0 = f(A′

0, B
′

0, C
′

0, D
′

0).

duplicate incoming bit A0, duplicate incoming bit A1, or swap the two bits. As there is no

D′ configuration field, the mx field defines the D crossbar function in this mode.

The 16-bit lookup table specifies an arbitrary 4-input logical function f , as shown

in Figure A.22. This function is independently applied to the high and low bits of the four

inputs to generate the high and low bits of the result; that is, Z1 = f(A′

1, B
′

1, C
′

1, D
′

1) and

Z0 = f(A′

0
, B′

0
, C ′

0
, D′

0
).

Split table mode

Split table mode (Figure A.23) is just like table mode except that D ′ is fixed at

10 (binary). This has the simple effect of allowing the two bits of Z to be calculated using
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dual 4-input table lookup

22

B C

crossbarcrossbar

2

A

crossbar

Z

2

22 2A′ B′ C′
10

Figure A.23: Split table mode (mode = 001, mx = 01).

32

Z1

24

1 0 1 0 1 0 1 0 ←− A′

1

1 1 0 0 1 1 0 0 ←− B′

1

1 1 1 1 0 0 0 0 ←− C ′

1

24

Z0

16

1 0 1 0 1 0 1 0 ←− A′

0

1 1 0 0 1 1 0 0 ←− B′

0

1 1 1 1 0 0 0 0 ←− C ′

0

Figure A.24: Interpretation of the lookup table in split table mode. Forcing D ′

1 = 1 and
D′

0 = 0 causes the 2 bits of Z to be calculated based on separate 3-input functions. Compare
with Figure A.22.

separate 3-input functions, as shown in Figure A.24. The usual D path through the logic

block is not affected (Section A.2.3); the D input to the logic block function is simply

ignored by the function box. Split table mode is chosen when mode = 001 and mx = 01.

Select mode

Select mode implements a multiplexor of four inputs, as illustrated in Figure A.25.

In place of the crossbars, three of the inputs, A, B, and C, are optionally shifted and/or

complemented (inverted) to form the perturbed values A′, B′, and C ′. The resulting C ′ is

then used to select one of the other four inputs as follows:

C ′ Z

00 A′

01 B′

10 D
11 Hout from row above
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22

B C

 optional
shift, invert

2

A

Z

2

2

2

2A′ B′ C′

shift C inshift C out

shift B inshift B out

shift A inshift A out

 optional
shift, invert

 optional
shift, invert

2

Hout
above

2

D

00 01 10 11

select

Figure A.25: Select mode (mode = 011, mx = 00). If mode bit 0 is set to 0 (i.e., mode = 010,
mx = 00), the function is the same except that all shifts in are assumed to be 0.

A0A1

A0′A1′

shift in
or zeroshift out

[57..56] A′

00 A′ = A1A0

01 A′ = ¬(A1A0)
10 A′ = A0A−1

11 A′ = ¬(A0A−1)

Figure A.26: The shift-invert functions. The “¬” symbol represents logical complement. If
the function mode suppresses shifts in, bit A−1 is 0. Otherwise, bit A−1 is taken from bit
A1 from the logic block on the right (regardless of the mode the logic block on the right is
in).
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One of the inputs is the value of Hout from the logic block in the same column in the row

above. This is the value being driven on the H wires by the logic block immediately above.

(There is always some such value, with the exception of the first row of a configuration.)

It is improper for C ′ to be 11 (binary) if select mode is used on the topmost row of a

configuration.

The functions of the shift-invert blocks are shown in Figure A.26. A 2-bit input

is first optionally shifted left one bit, and then the resulting 2-bit value (shifted or not) is

optionally complemented. When a shift is performed, a bit to shift in is taken from the

high bit of the same input from the logic block to the immediate right (regardless of what

mode the logic block on the right is in). It is improper to depend on the bit shifted into

the rightmost logic block on a row.

The shifts into all three shift-invert blocks can together be forced to 0 by the

configuration. This option is useful for the rightmost logic block of multi-block functions

and also for the rightmost logic block on a row. Shifts into the individual shift-invert blocks

cannot be independently suppressed.

Select mode is chosen with mode = 010 or 011, and mx = 00. The first case

(mode = 010) suppresses shifts in, while the second (mode = 011) does not.

Select mode performs no table lookups. The configuration’s lookup table field

must be set to the constant

32

1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0

16

Partial select mode

Partial select mode (Figure A.27) is like ordinary select mode, but with a different

set of values from which to choose:

C ′ Z

00 A′

01 B′

10 B (not shifted or inverted)
11 00

This mode is enabled when mode = 010 or 011, and mx = 01. Setting mode to 010

suppresses perturbation shifts in, while mode = 011 does not. Unlike ordinary select mode,

in partial select mode there is no restriction on the value of C ′ on the topmost row of a

configuration.
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22

B C

 optional
shift, invert

2

A

Z

2

2

2

2A′ B′ C′

shift C inshift C out

shift B inshift B out

shift A inshift A out

 optional
shift, invert

 optional
shift, invert

00 01 10 11

select

00

Figure A.27: Partial select mode (mode = 011, mx = 01). Again, if mode bit 0 is set to 0
(mode = 010, mx = 01), the function is the same except that all shifts in are assumed to
be 0.

Carry chain mode

Carry chain mode performs a logical or arithmetic function involving the fast carry

chain across a row. The mode is diagramed in Figure A.28. Only three inputs, A, B, and C,

are used; the D input is ignored. (The D path still exists and can be employed separately;

see Section A.2.2.) Like table mode, the three inputs are passed through crossbar functions

before being applied to table lookups. The results from the table lookup are used to control

the carry chain, and then these same values are logically combined with the carry chain

output to obtain the final result Z.

The table lookups deliver a total of four bits that control the carry chain: a

propagate and a generate signal are associated with the low bit of the result, and another

pair of such signals are associated with the high bit of the result. Figure A.30 shows how

these control bits affect the carry chain. If a propagate bit is 1, the carry into that position

is propagated to the next higher bit position; otherwise, the corresponding generate value

is used as the carry out to the next bit position. When propagate is 1, the generate value

is ignored by the carry function (although it may still be used in the result function; recall

Figure A.28). As Figure A.30 shows, the carry chain repeats the same operation at each
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22

B C

crossbarcrossbar

2

A

crossbar

Z

2

22 2A′ B′ C′

dual 3-input
table lookup

dual 3-input
table lookup

carry chain

22propagate generate

result function

2

carry incarry out

U V K

Figure A.28: Carry chain mode (mode = 101). The mx field selects the result function. If
mode bit 0 is set to 0 (i.e., mode = 100), the function is the same except that the carry in
is assumed to be 0.

32

U bit (propagate)

24

1 0 1 0 1 0 1 0 ←− A′ bit
1 1 0 0 1 1 0 0 ←− B′ bit
1 1 1 1 0 0 0 0 ←− C ′ bit

24

V bit (generate)

16

1 0 1 0 1 0 1 0 ←− A′ bit
1 1 0 0 1 1 0 0 ←− B′ bit
1 1 1 1 0 0 0 0 ←− C ′ bit

Figure A.29: Interpretation of the lookup table in carry chain mode.
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K1

carry in
or zerocarry out

0

1

generate1

propagate1

K0

0

1

generate0

propagate0

[33..32] mx

00 Z = V
01 Z = carry out
10 Z = U ⊕K
11 Z = ¬(U ⊕K)

Figure A.30: Operation of the carry chain.
The low-order carry in can be forced to 0
by the logic block mode.

Figure A.31: The result functions for
modes using the carry chain.

bit position.

The operation of the lookup tables is documented in Figure A.29. There are two

3-input tables: one is the propagate table, and the other the generate table. Each table is

looked up twice, once for the low bit position and once for the high bit position.

The carry chain outputs a 2-bit value K, comprising the carry into each bit po-

sition (Figure A.30). This is fed into the result function, along with the original propagate

and generate signals, which are renamed to U and V , respectively. The result function

implements one of four bitwise logical functions given in Figure A.31, chosen by the mx

field of the configuration.

A logic block is in carry chain mode when mode = 100 or mode = 101. The first

case forces the carry into the low bit (K0) to be 0. The second case accepts the carry out

from the logic block on the right. It is improper to depend on the carry in when the logic

block to the immediate right is not in carry chain mode. This applies in particular to the

rightmost logic block on a row, which has no logic block to the immediate right.

Triple add mode

The most complex mode is triple add mode, which can perform a sum or difference

of three inputs (Figure A.32). Each of the three inputs is first passed through a shift-invert

function (Figure A.26), and then a carry-save addition is performed on the perturbed inputs.

The two outputs of the carry-save addition are used to index two lookup tables to obtain

the carry chain propagate and generate signals (Figure A.33). From this point forward,

triple add mode is identical to the simpler carry chain mode.
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22

B C

 optional
shift, invert

2

A

Z

2

2

2

2
A′ B′ C′

carry chain

22propagate generate

result function

2

carry incarry out

U V K

dual 2-input
table lookup

dual 2-input
table lookup

carry-save
 addition

2carry 2sum

shift carry inshift carry out

shift C inshift C out

shift B inshift B out

shift A inshift A out

 optional
shift, invert

 optional
shift, invert

Figure A.32: Triple add mode (mode = 111). The mx field selects the result function. If
mode bit 0 is set to 0 (i.e., mode = 110), the function is the same except that all shifts and
carries in are assumed to be 0.

32

U bit (propagate)

24

1 0 1 0 1 0 1 0 ←− carry bit
1 1 0 0 1 1 0 0 ←− sum bit

24

V bit (generate)

16

1 0 1 0 1 0 1 0 ←− carry bit
1 1 0 0 1 1 0 0 ←− sum bit

Figure A.33: Interpretation of the lookup table in triple add mode. Each table is represented
by eight bits, even though four bits would be sufficient. The redundancy in the tables is
required and must be consistent.
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The carry-save addition performs the usual function, with a so-called “sum” output

calculated bitwise as A′ ⊕B′ ⊕C ′, and a carry output calculated as (A′ ∧B′)∨ (A′ ∧C ′)∨
(B′∧C ′) and shifted left by one bit position in the same manner as the shift-invert functions.

As with the shift-invert functions, the shift carry in (ultimately carry 0) can be forced to 0

by the configuration mode field.

Triple add mode is selected when mode = 110 or 111. The first case forces the

shifts in and the carry in to be 0, whereas the second case accepts these from the logic

block on the right. The mx field specifies the result function. As for carry chain mode,

it is improper to depend on the carry in or the shift carry in when the logic block to the

immediate right is not in triple add mode. Likewise, it is improper to depend on any of the

shifts or carries into the rightmost logic block on a row.

A.2.4 Internal timing

Delays within the array are defined in terms of the sequences that can fit within

each array clock cycle. Only three sequences are permitted:

• short wire, simple function, short wire, simple function;

• long wire, any function not using the carry chain; or

• short wire, any function.

Any other sequence must be assumed to require multiple clock cycles. A short wire is a

local horizontal wire (H wire) or a vertical wire of length 8 or less. A simple function is

either a table mode function or a traversal of the independent “D path” in a logic block.

At the end of a cycle, values can be latched in logic block registers without affecting these

rules.

Within combinatoric circuits, it is not necessary to latch intermediate results in

registers at the end of every clock cycle unless the latches are desired to achieve pipelining.

There is, however, a maximum allowed path delay between registers of 8 array clock cycles.
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A.3 Integration of array with main processor

The loading and execution of array configurations is under the control of the main

processor. Several instructions have been added to the MIPS-II instruction set for this

purpose, including ones that allow the processor to move data between the array and the

processor’s own registers. Configurations and data are transferred to/from the array over

the memory buses that run through the entire array (Figure A.2).

During array execution, the array itself can initiate reads or writes to memory (via

the memory buses) without intervention by the main processor. Such memory accesses are

coordinated by the control blocks at the end of each array row. Array memory accesses go

through the same memory hierarchy as the main processor, including the first-level data

cache. The array thus has available to it a relatively large, fast memory store which is

automatically kept consistent with memory accesses made by the processor.

In addition to on-demand “random” accesses to memory, three array memory

queues provide enhanced support for sequential memory accesses.

A.3.1 Processor control of array

The main processor’s instruction set has been extended with 20 new instructions

for controlling the array. The full list of added instructions is documented in Table A.1 at

the end of this section.

Array clock counter

Array execution is governed by a countdown counter called the array clock counter.

While the clock counter is nonzero, it is decremented by 1 with each array clock cycle. When

the array clock counter is zero, the latching of array registers is disabled, effectively stopping

the array.

A configuration can be loaded into the array only when the clock counter is zero.

After loading a configuration, the main processor can set the array clock counter to nonzero

to start the array executing for a given number of clock cycles. The counter can be set

using the gabump instruction. Various other processor instructions are also able to set the

counter in addition to their other functions.

There is no defined relationship between the array clock and the rate at which

the main processor executes instruction. To ensure proper synchronization, most processor
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instructions that interact with the array first stall until the clock counter reaches zero before

performing their function. The clock counter thus provides the mechanism by which array

calculations are interlocked with subsequent dependent processor instructions.

Since the number of clock cycles needed for a calculation may not be known in

advance, the array has the ability to halt itself whenever its function is complete, by forcibly

zeroing the clock counter. How the array can be configured to do this is discussed along with

the other functions of the control blocks in Section A.3.2. It is also possible for the processor

to halt the array at any time by zeroing the clock counter. The gastop instruction which

performs this function is covered in connection with context switches in Section A.3.1.

The array clock counter is a 32-bit register, of which only the least significant

31 bits actually count down. The most significant bit is a “sticky” bit: once set, it remains

set until the entire counter is forcibly zeroed either by the array or by the processor (gastop).

Since the array is halted only when the entire 32-bit counter is zero, the most significant bit

acts as an “infinity” bit. If the latency of an array calculation is entirely data-dependent, the

processor can set the most significant bit of the clock counter to start the array operating

indefinitely. The array can then zero the clock when its computation completes. If the

processor is ready to receive array results before the array is done, the first instruction

attempting to retrieve data from the array will interlock as usual until the counter is zeroed

by the array.

Loading configurations

The loading of array configurations is under the control of instructions executed

by the main processor. Loading a configuration makes the configuration active, so that the

configuration controls the behavior of the array. Only one configuration can be active in

the array at a time. Loading a new configuration replaces the previous one.

Although logically only one configuration can be loaded at a time, in practice

one can expect an implementation to incorporate within the array a configuration cache of

recently loaded configurations, so that the process of “loading” a configuration does not

necessarily involve transferring it from external memory every time. Only a few processor

clock cycles should be needed to load a configuration from the configuration cache. If

a configuration is not in the cache, it can be expected that close to the full aggregate

bandwidth of the memory buses will be used to load it from external memory.
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The smallest configuration is one row, and every configuration must fill exactly

some number of contiguous rows. When a configuration is loaded that uses less than the

entire array, the rows that are unused are automatically made inactive. The first, topmost

row of a configuration is row number 0 by default, and subsequent rows are labelled with

increasing integers.

The active configuration can be changed only when the array clock counter is zero

(the array is halted). The instructions that load configurations will stall waiting for the

clock counter to become zero before performing their function.

The simplest instruction for loading configurations is gaconf, which takes a single

register operand giving the address of the configuration stored in memory. The first 4 bytes

(32 bits) at this address are interpreted as a count of the number of rows of the configuration.

Following this row count is 8 bytes for each block (control blocks and logic blocks) of the

configuration, starting with 24 × 8 = 192 bytes for row 0, and so on for each row. The

configuration for a row contains first the 8 bytes for the control block, followed by the logic

block in the leftmost column 22, on down to the rightmost logic block in column 0. In

addition to loading a configuration into the array and making it active, gaconf initializes

the Z and D registers of all logic blocks to zero.

During the time a configuration is active, its copy in memory must not be changed

because it may need to be reloaded at any time. (Reloads can be caused by context switches

in a multitasking system, for example.) Furthermore, if an inactive configuration is modified

in memory and explicitly reloaded, the changes may not take effect if an earlier unmodified

version of the configuration is still in the cache. Before an attempt is made to load a modified

configuration, the previous version must be definitely cleared from the cache. The gacinv

instruction performs this function. It may be executed even while another configuration is

running.

The gaconf instruction does not allow state to remain in the logic block registers

from one configuration to another. A more complex pair of instructions supports configura-

tion overlays for this purpose. The gaalloc instruction reserves a group of rows into which

subsequent configurations will be overlayed. Like gaconf, gaalloc displaces any currently

active configuration and zeros all of the Z and D registers in the array; but no configura-

tion is yet loaded by the instruction. The gaconfo instruction loads a configuration into a

previously allocated group of rows. An overlayed configuration may not extend beyond the

rows allocated by gaalloc, but it need not fill the allocation, and it may be loaded starting
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at a row other than the first allocated row. All of the register state within the allocated

space is preserved from one overlay to another. Nevertheless, if an overlay is smaller than

the allocated space, only the rows of the overlaying configuration are made active. Inactive

rows maintain their data state until subsequently made active.

The gaalloc instruction takes as an operand a pointer to a 32-bit word in memory,

the value of which is the number of contiguous rows to allocate. Although logically this

indirection through a pointer is unnecessary (the register operand could just as easily have

specified the number of rows directly), the pointer is intended to be used as an identifier

internally by the cache. If a later execution of gaalloc precedes a repeat sequence of

gaconfo overlays, the same pointer should be used as the operand to both gaalloc’s in

order to maximize cache utilitization.

For completeness, gareset “unloads” any active configuration. Array activity is

disabled until such time as another configuration is loaded.

Transfering data to/from array

The processor has a collection of instructions for copying data between the pro-

cessor register file and the registers in array logic blocks. Since a single logic block’s Z or

D register is only 2 bits, most data transfers gang together 16 contiguous logic blocks on a

row so that 32 bits of data are copied at a time. An individual transfer copies to or from

the 16 combined Z registers or the 16 combined D registers of the 16 logic blocks. For

each transfer operation, an array row number must be specified, along with whether the

array source/target is to be the Z or D registers. These two parameters (row number and

Z/D selection) are encoded as constants within some instructions, while other instructions

obtain them from an additional register operand.

Each row has 23 logic blocks, but an individual transfer operation only touches at

most 16 of them corresponding to a full 32-bit word. The set of logic blocks read or written is

fixed for each particular instruction (Figure A.34). Most instructions copy to/from only the

middle 16 logic blocks found in columns 4 through 19 inclusive. A few variant instructions

allow access to the logic blocks at the extreme left or right ends of a row. The rightmost

logic block is always associated with the least significant 2 bits transferred, and the leftmost

logic block is associated with the most significant 2 bits.

The mtga (move to Garp array) instruction transfers a 32-bit word from a processor
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19 4

(a) mtga, mfga, mtgav, mfgav, mtga2.

15 00

(b) mtgavy, mfgavy.

22 16

(c) mtgavz, mfgavz.

Figure A.34: The set of logic blocks read or written by various processor instructions. The
mtga (move to Garp array) instructions copy a 32-bit word from a processor register to
a contiguous set of logic block registers along an array row. The mfga (move from Garp
array) instructions transfer a word in the opposite direction. Since logic block registers are
2 bits each, 16 logic blocks correspond to a 32-bit data word. The leftmost block on each
row is a control block containing no visible data registers.

register to the Z or D registers of the middle 16 logic blocks of a fixed row. The row number

and the choice of Z or D registers are encoded as constants in the mtga instruction. The

mfga (move from Garp array) instruction is the same except it transfers in the opposite

direction, from the array to a processor register. Instructions mtgav and mfgav are similar,

but instead of hardcoding the array row number and Z/D register choice in the instruction,

a second register operand supplies these parameters.

Access to the logic blocks in the leftmost and rightmost columns of a row is pro-

vided by variants of mtgav and mfgav. The mtgavy and mfgavy instructions access columns

0 through 15 but are otherwise identical to mtgav and mfgav. At the other end of a row,

variants mtgavz and mfgavz read or write the 14 bits of columns 16 through 22. (Column

23 is left out because it contains the control blocks, which have no visible data registers.)

These last two instructions are unusual in that they only transfer 14 bits. For mtgavz,

the most significant 18 bits of the source processor register are ignored; while in the other

direction, mfgavz zeros the most significant 18 bits of the destination processor register.

The processor can copy to or from the array only when the array clock counter is

zero. If the clock counter is nonzero, a data transfer instruction will stall until the clock

counter becomes zero. The instructions mtga and mfga can also set the clock counter to a

small constant after performing their transfer.
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Memory queue control

Two processor instructions (galqc and gasqc) are used to load and store the state

of the array memory queues. The details of these instructions are deferred until Section A.3.3

when array memory queues are covered.

Saving and restoring array state

Information about the active configuration is stored in three read-only registers:

$gacr3 – The pointer that was the argument to gaalloc when the current array allocation

was made. The 32-bit word at this address gives the number of rows allocated. If

the array allocation was made by gaconf (without a separate gaalloc), this is the

pointer that was the argument to gaconf.

$gacr4 – The pointer to the configuration in memory that was the argument to gaconf or

gaconfo.

$gacr5 – The row offset that was the argument to gaconfo. If the active configuration

was loaded by gaconf, this value is zero.

The cfga instruction can be used to retrieve any one of these values into a processor register.

When a context switch occurs while the array is active, it must be possible to

suspend the array and save its state so that the computation can be resumed at a later

time. The first step toward suspending the array is to execute the gastop instruction,

which in one step copies the clock counter to a processor register and zeros the counter.

The current allocation and configuration can be obtained from the array control registers

above, and the logic block registers can be read out using the mfgav instructions already

described. The state of the array memory queues is saved using the gasqc instruction. The

remaining internal state of the array, including the status of pending memory reads, can be

written to memory using the special gasave instruction.

Resuming an array computation requires first that the array allocation be restored

by executing gaallocwith the previously saved value from $gacr3. The active configuration

is reloaded by executing gaconfo with the values that were saved from $gacr4 and $gacr5.

The logic block registers can be restored using simple mtgav instructions, while galqc

reloads the state of the array memory queues. Once the logic block registers are restored,
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garestore can be used to read back the internal state that had been saved by gasave. The

final step for resuming the array is to use gabump to restore the array clock counter to the

value originally returned by gastop.

Besides reading back the array’s internal state, garestore also ensures that com-

binatorial propagations in the array are given time to complete, following the recent restora-

tion of the logic block register values.
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Load array configuration
32

0 1 0 0 1 1 1

25

0 0 0 0

21

rt

16

0 0 0 0 0

11

1 1 0 1 1 0

5

0 0 0 0 0

0

gaconf rt

Loads a configuration from memory and makes it active. Register rt gives the starting
address of the configuration in memory.

If the array clock counter is nonzero, this instruction first waits for the clock counter to
fall to zero. Any array reads still in progress are then cancelled, and the existing array
allocation, if any, is released. Sufficient space is allocated within the array to hold the
specified configuration, and the configuration is loaded and made active. The Z and D
registers in the newly allocated space are zeroed. This instruction is equivalent to the
sequence of a gaalloc instruction followed by gaconfo.

The copy of the configuration in memory must not change until a flush configuration
instruction (gacinv) is executed for this address.

Reset array
32

0 1 0 0 1 1 1

25

0 0 0 0

21

0 0 0 0 0

16

0 0 0 0 0

11

1 1 0 0 1 0

5

0 0 0 0 0

0

gareset

Resets the array, releasing the existing array allocation.
If the array clock counter is nonzero, this instruction first waits for the clock counter to

fall to zero. Any array reads still in progress are then cancelled, and the existing array
allocation, if any, is released.

Flush array configuration from cache
32

0 1 0 0 1 1 1

25

0 0 0 0

21

rt

16

0 0 0 0 0

11

0 1 0 0 0 0

5

0 0 0 0 0

0

gacinv rt

Flushes from the configuration cache the configuration or array allocation at the address
given by rt.

Table A.1: Added instructions, part 1.
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Allocate array space
32

0 1 0 0 1 1 1

25

0 0 0 0

21

rt

16

0 0 0 0 0

11

1 1 0 0 1 0

5

0 0 0 0 0

0

gaalloc rt

Allocates space within the array for a configuration, without actually loading a configura-
tion. Register rt gives the address of a word in memory specifying the number of rows to
allocate.

If the array clock counter is nonzero, this instruction first waits for the clock counter to
fall to zero. Any array reads still in progress are then cancelled, and the existing array
allocation, if any, is released. The new allocation is put into effect, with all array rows
inactive. The Z and D registers in all of the newly allocated space are zeroed.

The memory word pointed to by register rt must not change until a flush configuration
instruction (gacinv) is executed for this address.

Load array configuration overlay
32

0 1 0 0 1 1 1

25

0 0 0 0

21

rt

16

rd

11

1 1 0 1 0 0

5

clock count

0

gaconfo rt,rd,count
gaconfo rt,rd

Loads a configuration from memory into the previously allocated array space, while preserv-
ing array data state. Register rt gives the starting address of the configuration in memory,
and register rd gives the first allocated row at which to load the overlaying configuration.

If the array clock counter is nonzero, this instruction first waits for the clock counter to
fall to zero. The specified configuration is then loaded and made active, after which the
array clock counter is set to the 5-bit unsigned integer constant encoded in the instruction.

The configuration being loaded cannot extend outside the current allocated array space.
Although the existing array allocation remains in effect in its entirity, only the rows of the
overlaying configuration are made active. The contents of the Z and D registers within the
allocated array space are unaffected by this operation.

The copy of the configuration in memory must not change until a flush configuration
instruction (gacinv) is executed for this address.

Table A.1, part 2.
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Copy word to array
32

0 1 0 0 1 1 1

25

1 0 0 1

21

rt

16

row number

6

R

5

clock count

0

mtga rt,reg,count
mtga rt,reg

Copies the value in register rt to the middle 16 logic blocks of a fixed array row. The array
row number is encoded as an unsigned integer constant in the instruction. If instruction
bit R is 0, the concatenation of the sixteen 2-bit Z registers in columns 4 through 19 is the
destination of the copy. If R is 1, the concatenation of the sixteen D registers in columns
4 through 19 is the destination. Column 4 receives the least significant 2 bits of the value
copied and column 19 receives the most significant 2 bits.

If the array clock counter is nonzero, this instruction first waits for the clock counter to
fall to zero. The copy is then performed, after which the clock counter is set to the 5-bit
unsigned integer constant encoded in the instruction.

For the reg argument to mtga, the assembler accepts the syntax $zn or $dn, where n is
the array row number expressed as a decimal integer numeral. (For example, $z19 denotes
the Z registers of array row 19.) The count argument must be an integer constant. If count
is not given it defaults to zero.

Copy word from array
32

0 1 0 0 1 1 1

25

1 0 0 0

21

rt

16

row number

6

R

5

clock count

0

mfga rt,reg,count
mfga rt,reg

This instruction is identical to mtga except that the direction of the copy is reversed.

Table A.1, part 3.
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Copy word to array, variable row
32

0 1 0 0 1 1 1

25

0 0 0 0

21

rt

16

rd

11

1 0 0 0 1 1

5

0 0 0 0 0

0

mtgav rt,rd

Copies the value in register rt to the middle 16 logic blocks of the array row specified by
register rd. This instruction is similar to mtga except that the row number and the R field
of mtga are given by the value of register rd as follows:

32

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

11

row number

1

R

0

As with mtga, if the least significant bit of rd (bit R) is 0, the destination of the copy is
the concatenation of the sixteen Z registers in columns 4 through 19 of the specified row;
whereas if the least significant bit of rd is 1, the destination is the concatenation of the
sixteen D registers in columns 4 through 19. Column 4 receives the least significant 2 bits
of the value copied and column 19 receives the most significant 2 bits.

If the array clock counter is nonzero, this instruction first waits for the clock counter to
fall to zero before the copy is performed.

Copy word from array, variable row
32

0 1 0 0 1 1 1

25

0 0 0 0

21

rt

16

rd

11

1 0 0 0 1 0

5

0 0 0 0 0

0

mfgav rt,rd

This instruction is identical to mtgav except that the direction of the copy is reversed.

Table A.1, part 4.



215

Copy word to array, variable row, low columns
32

0 1 0 0 1 1 1

25

0 0 0 0

21

rt

16

rd

11

1 0 0 1 0 1

5

0 0 0 0 0

0

mtgavy rt,rd

This instruction is identical to mtgav except that the destination of the copy is columns 0
through 15 of the specified row. Column 0 receives the least significant 2 bits of the value
copied and column 15 receives the most significant 2 bits.

Copy word from array, variable row, low columns
32

0 1 0 0 1 1 1

25

0 0 0 0

21

rt

16

rd

11

1 0 0 1 0 0

5

0 0 0 0 0

0

mfgavy rt,rd

This instruction is identical to mtgavy except that the direction of the copy is reversed.

Copy word to array, variable row, high columns
32

0 1 0 0 1 1 1

25

0 0 0 0

21

rt

16

rd

11

1 0 0 0 0 1

5

0 0 0 0 0

0

mtgavz rt,rd

This instruction is identical to mtgav except that the destination of the copy is columns
16 through 22 of the specified row. Only the least significant 14 bits of source register rt
are copied. The most significant 18 bits of rt are ignored. Column 16 receives the least
significant 2 bits of the value copied and column 22 receives the most significant 2 bits.

Copy word from array, variable row, high columns
32

0 1 0 0 1 1 1

25

0 0 0 0

21

rt

16

rd

11

1 0 0 0 0 0

5

0 0 0 0 0

0

mfgavz rt,rd

This instruction is identical to mtgavz except that the direction of the copy is reversed.
The most significant 18 bits of destination register rt are zeroed.

Table A.1, part 5.
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Load array queue control
32

0 1 0 0 1 1 1

25

0 0 0 0

21

rt

16

rd

11

1 0 1 0 0 0

5

0 0 0 0 0

0

galqc rt,rd

Loads the control registers for the queue specified by register rd with the 20 bytes at the
address given by register rt. The value of register rd must be an integer in the range of 0
to 2 inclusive, indicating one of the three array memory queues. Details about the memory
queues and the queue control registers can be found in Section A.3.3 and Figure A.46.

If the array clock counter is nonzero, this instruction first waits for the clock counter to
fall to zero before the load is performed.

Store array queue control
32

0 1 0 0 1 1 1

25

0 0 0 0

21

rt

16

rd

11

1 0 1 0 0 1

5

0 0 0 0 0

0

gasqc rt,rd

Stores the control registers for the queue specified by register rd into 20 bytes starting at
the address given by register rt. The value of register rd must be an integer in the range of
0 to 2 inclusive, indicating one of the three array memory queues.

If the array clock counter is nonzero, this instruction first waits for the clock counter to
fall to zero before the store is performed.

Increase array clock counter
32

0 1 0 0 1 1 1

25

0 0 0 0

21

0 0 0 0 0

16

rd

11

0 0 0 0 1 0

5

0 0 0 0 0

0

gabump rd

Adds the value in register rd to the array clock counter. The addition is performed modulo
232. If a carry out of the most significant bit occurs (unsigned overflow), the most significant
bit of the clock counter is set.

Table A.1, part 6.
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Stop array
32

0 1 0 0 1 1 1

25

0 0 0 0

21

rt

16

0 0 0 0 0

11

0 0 0 0 0 0

5

0 0 0 0 0

0

gastop rt
gastop

Zeros the clock counter, halting array execution. Register rt gets the value that the counter
had before being zeroed.

The assembler allows the destination operand to be omitted, in which case rt is set to
the MIPS pseudo-register $0 (zero register).

Copy word from array control register
32

0 1 0 0 1 1 0 0 0 1 0

21

rt

16

zd

11

0 0 0 0 0 0 0 0 0 0 0

0

cfga rt,zd

Copies the array control register zd to processor register rt. The 5-bit zd field must be one
of the following integers:

0 The version register, which has the format
32

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

16

implementation

8

revision

0

1 The number of bytes that gasave writes to memory. (This is constant for a given
implementation/revision.)

3 The pointer that was the argument to gaalloc or gaconf when the current array
allocation was made.

4 The pointer to the configuration in memory that was the argument to gaconfo or
gaconf.

5 The row offset that was the argument to gaconfo, or zero if the active configuration
was loaded by gaconf.

The assembler accepts for zd either the notation $n or $gacrn.

Table A.1, part 7.



218

Save internal array state
32

0 1 0 0 1 1 1

25

0 0 0 0

21

rt

16

0 0 0 0 0

11

1 1 1 0 0 1

5

0 0 0 0 0

0

gasave rt

Saves the internal state of the array to memory at the address given by register rt. The
internal state includes in particular the status of pending reads from memory. The amount
of memory needed to store the saved state can be discovered by reading the $gacr1 control
register using the cfga instruction.

If the array clock counter is nonzero, this instruction first waits for the clock counter to
fall to zero before the store is performed.

Restore internal array state
32

0 1 0 0 1 1 1

25

0 0 0 0

21

rt

16

0 0 0 0 0

11

1 1 1 0 0 0

5

0 0 0 0 0

0

garestore rt

Loads the internal state of the array from memory at the address given by register rt. This
instruction also stalls long enough to ensure that conbinatorial signals in the array have
had time to settle, assuming a maximum path delay of 8 array clock cycles.

If the array clock counter is nonzero, this instruction first waits for the clock counter to
fall to zero before the load is performed.

Table A.1, part 8.
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cfga

32

0 1 0 0 1 1 0 0 0 1 0

21

rt

16

zd

11

0 0 0 0 0 0 0 0 0 0 0

0

gastop

32

0 1 0 0 1 1 1

25

0 0 0 0

21

rt

16

0 0 0 0 0

11

0 0 0 0 0 0

5

0 0 0 0 0

0

gabump

32

0 1 0 0 1 1 1

25

0 0 0 0

21

0 0 0 0 0

16

rd

11

0 0 0 0 1 0

5

0 0 0 0 0

0

gacinv

32

0 1 0 0 1 1 1

25

0 0 0 0

21

rt

16

0 0 0 0 0

11

0 1 0 0 0 0

5

0 0 0 0 0

0

mfgavz

32

0 1 0 0 1 1 1

25

0 0 0 0

21

rt

16

rd

11

1 0 0 0 0 0

5

0 0 0 0 0

0

mtgavz

32

0 1 0 0 1 1 1

25

0 0 0 0

21

rt

16

rd

11

1 0 0 0 0 1

5

0 0 0 0 0

0

mfgav

32

0 1 0 0 1 1 1

25

0 0 0 0

21

rt

16

rd

11

1 0 0 0 1 0

5

0 0 0 0 0

0

mtgav

32

0 1 0 0 1 1 1

25

0 0 0 0

21

rt

16

rd

11

1 0 0 0 1 1

5

0 0 0 0 0

0

mfgavy

32

0 1 0 0 1 1 1

25

0 0 0 0

21

rt

16

rd

11

1 0 0 1 0 0

5

0 0 0 0 0

0

mtgavy

32

0 1 0 0 1 1 1

25

0 0 0 0

21

rt

16

rd

11

1 0 0 1 0 1

5

0 0 0 0 0

0

Table A.2: List of added instructions in encoding order.



220

galqc

32

0 1 0 0 1 1 1

25

0 0 0 0

21

rt

16

rd

11

1 0 1 0 0 0

5

0 0 0 0 0

0

gasqc

32

0 1 0 0 1 1 1

25

0 0 0 0

21

rt

16

rd

11

1 0 1 0 0 1

5

0 0 0 0 0

0

gareset

32

0 1 0 0 1 1 1

25

0 0 0 0

21

0 0 0 0 0

16

0 0 0 0 0

11

1 1 0 0 1 0

5

0 0 0 0 0

0

gaalloc

32

0 1 0 0 1 1 1

25

0 0 0 0

21

rt

16

0 0 0 0 0

11

1 1 0 0 1 0

5

0 0 0 0 0

0

gaconfo

32

0 1 0 0 1 1 1

25

0 0 0 0

21

rt

16

rd

11

1 1 0 1 0 0

5

clock count

0

gaconf

32

0 1 0 0 1 1 1

25

0 0 0 0

21

rt

16

0 0 0 0 0

11

1 1 0 1 1 0

5

0 0 0 0 0

0

garestore

32

0 1 0 0 1 1 1

25

0 0 0 0

21

rt

16

0 0 0 0 0

11

1 1 1 0 0 0

5

0 0 0 0 0

0

gasave

32

0 1 0 0 1 1 1

25

0 0 0 0

21

rt

16

0 0 0 0 0

11

1 1 1 0 0 1

5

0 0 0 0 0

0

mfga

32

0 1 0 0 1 1 1

25

1 0 0 0

21

rt

16

row number

6

R

5

clock count

0

mtga

32

0 1 0 0 1 1 1

25

1 0 0 1

21

rt

16

row number

6

R

5

clock count

0

Table A.2, continued.
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A.3.2 Array control blocks

The control blocks at the left end of each row help interface between the array on

the one hand and the processor and memory on the other. The functions a control block

can perform include:

• zero the clock counter (thus halting array execution);

• interrupt the processor;

• initiate a memory access at an arbitrary address;

• initiate a read or write through an array memory queue; and

• load or store the data of a memory access to/from logic block registers.

As always, the active configuration determines which if any of these functions each control

block might perform. Figure A.35 shows the general encoding of the configuration for a

control block. Like a logic block, a control block’s configuration is 64 bits, with four 2-bit

inputs, A, B, C, and D, taken from adjacent wires. These inputs are used to control some

subset of the functions listed above, according to the mode in which the control block is

configured.

Regardless of mode, the 8 bits of input are always reduced down to three control

signals as illustrated in Figures A.36 and A.37. First, each individual 2-bit input is reduced

to a single bit, either by discarding one of the bits or by logically or -ing the two bits

(Figure A.37). The resulting A′ signal is then used to gate each of the corresponding B ′,

C ′, and D′ signals to construct the three control signals. The three control signals are thus

generated directly from the B, C, and D inputs, except that A acts as an enable for all

three signals.

Any of the four inputs can be fixed to binary constant 00 or 10, the same as for a

logic block. Otherwise, a control block input can come from a local horizontal wire (H wire),

either from above or below the control block. Control blocks have no outputs, so there are

no vertical wires associated with the column of control blocks. Aside from the fewer options,

the encoding of control block inputs is identical to that for logic blocks (Figure A.10).

For timing purposes, inputs that are not constant must come directly from a logic

block register across the connecting H wire to the control block, as illustrated in Figure A.38.
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64

A in

58

A′

56

B in

50

B′

48

C in

42

C′

40

D in

34

D′

32

32

mode-specific fields

5

Hdir

3

mode

0

[63..58] A in

000000 A = 00 (binary)
000001 A = 10 (binary)
100010 A = leftmost H wire pair above

...
...

101010 A = rightmost H wire pair above
110010 A = leftmost H wire pair below

...
...

111010 A = rightmost H wire pair below

[57..56] A′

00 A′ = A0

10 A′ = A1 ∨A0

11 A′ = A1

[4..3] Hdir

00 H wires driven from right end (shift left)
01 H wires driven from center
10 H wires driven from left end (shift right)

[2..0] mode

000 no function
010 processor interface
110 memory interface

Figure A.35: Control block configuration encoding.
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2D2C2B2A

00 10

2

any adjacent
H wire pair

00 10

2

any adjacent
H wire pair

00 10

2

any adjacent
H wire pair

00 10

2

any adjacent
H wire pair

A′ B′ C′ D′

three mode-specific control signals

reduce reduce reduce reduce

Figure A.36: Control block signals.

A0A1

A′

Figure A.37: The reduction
functions.

register

logic block

control block

H wire

Signal latched in upstream registerT−1

Signal observed in control blockT

clock
cycle:

Figure A.38: A control block input must come directly over a local horizontal wire from a
logic block register in the same row or the row above.
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64

A in

58

A′

56

0 0 0 0 0 0 0 0

48

C in

42

C′

40

D in

34

D′

32

32

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

5

Hdir

3

0 1 0

0

A′ → enable
C ′ → zero clock counter
D′ → interrupt processor

Figure A.39: Configuration encoding for a control block in processor interface mode.

A logic block register that supplies an input to a control block in this way is known as the

upstream register for that control input.

Processor interface blocks

In processor interface mode, a control block can perform two simple actions con-

nected with the main processor. The format of a processor interface configuration is given

by Figure A.39. The C ′ input allows the array to zero the clock counter, and the D ′ input

makes it possible for the array to interrupt the processor. If the A′ and C ′ inputs are both 1,

the array clock counter is zeroed at the end of the current array clock cycle, thus halting

array execution. If A′ and D′ are both 1, the main processor is forced to take an interrupt.

Note that array execution is not directly affected by any processor interrupts.

Memory interface blocks

Memory accesses can be initiated from the reconfigurable array without direct

processor intervention. A memory access proceeds in two steps: the initiate step starts

the access by providing a memory address, and the transfer step transfers the data (Fig-

ure A.41). The address is read from the Z registers of a selected row, over a special address

bus that runs parallel to the four memory buses already mentioned. Up to four contiguous

words can be read or written in one memory access, where the word size is selectable as

either 8, 16, or 32 bits. Each word is transferred over a separate memory bus.

For memory writes, the initiate and transfer steps must occur together in the same

clock cycle. For reads, the initiate step necessarily precedes the transfer step. Only one

demand access to memory can be initiated in each array clock cycle, although multiple

memory accesses may be in different stages of progress at any one time.
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64

A in

58

A′

56

B in

50

B′

48

C in

42

C′

40

D in

34

D′

32

32

type

30

0 0 0

27

delay

24

sizea

22

N

21

0 0 0

18

K

16

sizer

14

R

13

0 0 0

10

bus

8

0 0 0

5

Hdir

3

1 1 0

0

A′ → enable
B′ → initiate memory access
C ′ → load/store registers over bus
D′ → direction of transfer (load or store)

Figure A.40: Configuration encoding for a control block in memory interface mode. Details
about the various fields are covered in Figures A.42, A.43, and A.47.

Z or D registers

Z registers

Z or D registers

Z or D registers

Z or D registers

Initiate step:  Address is
read over address bus.

Transfer step:  Up to four words are
transferred over memory buses.

Figure A.41: The two steps of a memory access initiated by the array.

The array sees the same memory hierarchy as the main processor, including all

data caches. Misses in the first level data cache may cause array execution to be stalled

while the data is fetched from external memory. To reduce cache misses, the array can

perform prefetching accesses that merely load the data cache. Array memory accesses may

also generate page fault traps as discussed later.

In memory interface mode, a control block has the ability either to initiate a

memory access or to participate in the transfer of data, or both. Figure A.40 shows the

format of the memory interface configuration. Because the initiate and transfer phases are

controlled independently, the configuration fields associated with the initiate step will be

presented first, separately from those concerned with the transfer step.

Figure A.42 highlights the parts of a memory interface configuration that control

the initiation of memory accesses. The actual instigation of a memory access is controlled
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64

A in

58

A′

56

B in

50

B′

48 40

D in

34

D′

32

32

type

30

0 0 0

27

delay

24

sizea

22

N

21

0 0 0

18

K

16 3

1 1 0

0

A′ → enable
B′ → initiate memory access
D′ → 0 = read, 1 = write or prefetch

[31..30] type

01 demand access, read/prefetch, cache allocate
10 demand access, read/write, cache allocate
11 demand access, read/write, no cache allocate

[26..24] delay

000 1 cycle
...

...
111 8 cycles

[23..22] sizea

00 8 bits
01 16 bits
10 32 bits

[21] N

0 aligned address (ignore bottom bits)
1 possibly nonaligned address

[17..16] K

00 demand access 1 word
01 demand access 2 words
10 demand access 4 words

Figure A.42: Memory interface configuration fields associated with the initiate step of a
demand memory access.
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by the B′ signal, while the direction of access (read versus write) is determined by D ′. A

demand access to memory is initiated whenever A′ and B′ are both 1. If D′ is 0 at that

time, the access will be a read; otherwise it will be either a write or a prefetch, depending

on the configuration. When a control block initiates a demand memory access, the contents

of the Z registers in the logic blocks in columns 4 through 19 of the same row are sent over

the address bus to provide a 32-bit address for the memory system.

Other configuration fields control various apects of the memory access. The sizea

and K fields choose the word size and number of words to access, respectively. The largest

possible access is to four contiguous 32-bit words, while the smallest is to a single 8-bit

“word.” The word size and the number of words must each be a power of two within these

ranges.

If an access is not a read (that is, if D ′ = 1), it is either a write or a prefetch. The

type field of the configuration (Figure A.42) determines whether a non-read memory access

is a write or a prefetch, and also whether a cache miss should cause data to be brought into

the cache. Since prefetches are performed solely for the purpose of bringing data into the

cache, it makes no sense not to do cache allocation on misses in this case. Normal reads

and writes may be configured for cache allocation on misses or not.

When the access word size is larger than a byte, the given address may not be

aligned on a natural word-size boundary. The configuration chooses one of two possibilities:

either the least significant bits of the address are ignored, or a nonaligned memory access is

performed at the specified address. The number of bits ignored is dependent on the word

size: 1 bit if the word size is 16 bits, and 2 bits if the word size is 32 bits.

Finally, the delay field in the configuration determines the perceived delay for

read accesses. This field is ignored for writes and prefetches. The timing details of memory

accesses are covered later in this section.

Although any number of control blocks can be configured as memory interfaces,

only one control block can initiate a memory access during any array clock cycle.

The transfer step performs the actual movement of data, either simultaneously

with the initiate step in the case of writes, or after the data has been read from memory.

Figure A.43 shows the memory interface configuration fields associated with the transfer

step. The C ′ input to the control block decides, for each clock cycle, whether a transfer into

or out of the row occurs on that cycle. The D ′ signal indicates the direction of transfer, the

same as it does for the initiate step. Other fields of the configuration determine: (1) which
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64

A in

58

A′

56 48

C in

42

C′

40

D in

34

D′

32

32 16

sizer

14

R

13

0 0 0

10

bus

8 3

1 1 0

0

A′ → enable
C ′ → load/store registers over bus
D′ → 0 = load, 1 = store

[15..14] sizer

00 8 bits
01 16 bits
10 32 bits

[13] R

0 load/store Z registers
1 load/store D registers

[9..8] bus

00 bus 0
01 bus 1
10 bus 2
11 bus 3

Figure A.43: Memory interface configuration fields associated with the transfer step of a
memory access.

Initiate write to memory
(Address is in Z registers of row)

T

clock
cycle:

Store registers over memory buses
(Data is in Z or D registers of rows)

AND 

(Control signals are in upstream registers)T−1

Figure A.44: Timing of a memory write ex-
ecuted by the array. The write “occurs” in
the active cycle following the control sig-
nals being applied (see text).

Initiate read from memory
(Address is in Z registers of row)

T

clock
cycle:

Load registers over memory buses
(Causes data to be latched into Z or D
   registers of rows)

(Initiate signal is in upstream register)T−1

T+n

(Load signals are in upstream registers)T+n−1

n cycles of delay  (1 ≤ n ≤ 8)

Figure A.45: Timing of a memory read ex-
ecuted by the array.
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memory bus the data will be written to or loaded from, (2) which registers will be written

out or loaded (Z or D), and (3) the number of bits to write or load (8, 16, or 32). If 32 bits

are to be transferred, the Z or D registers in columns 4 through 19 of the row will either be

written to or read from the selected bus. If only 16 bits are to be transferred, only columns

4 through 11 are affected, and the registers in columns 12 through 19 are not involved.

Likewise, if only 8 bits are to be transferred, only columns 4 through 7 participate in the

operation.

Each word of the as many as four words transferred has a memory bus dedicated

to it during the transfer. The first word at the given memory address is copied over bus 0.

If the access involves more than one word, subsequent words are copied over buses 1, 2, and

3, in that order. For example, a memory access of two words involves buses 0 and 1: bus 0

for the word at the given address in memory, and bus 1 for the next contiguous word in

memory.

Following the initiation of a memory read of n words, and after a specific number

of array clock cycles have elapsed (discussed below), buses 0 through n− 1 will contain the

values read from memory. At that time, the control blocks on the rows into which these

values should be latched must signal the transfer step.

For writes, the initiate and transfer steps are signaled simultaneously. Exactly

one word must be driven onto each of the n buses. Figure A.44 shows the timing for a

write. Conceptually, the write occurs in the clock cycle following the control signals being

applied. If the clock counter is zeroed in the same clock cycle that the write is signaled, the

write will not occur until the clock counter is subsequently given a nonzero value, continuing

execution of the same configuration. If the current configuration is never resumed, the write

will never actually occur, despite having been initiated.

Figure A.45 shows the timing for a read. For reads, the delay field of the memory

interface configuration specifies the number of array clock cycles by which the data will be

delayed. If this is at least as great as the actual latency of a read operation, execution of

the array will not be stalled waiting for the read to return. Otherwise, an implementation

must stall the array sufficiently to give the appearence that the data was returned in the

specified number of array clock cycles.
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A.3.3 Array memory queues

Besides being able to request memory accesses directly, the array has available

to it three memory queues that can increase the performance of sequential accesses. The

array reads or writes to/from a queue much as it does directly to/from memory, except

that it does not supply an address or other information about the access. A memory

queue is programmed by the main processor with this information in advance, using the

galqc instruction. Figure A.46 shows the format of the 20 bytes of control information

that are loaded from memory into a memory queue’s controller by the galqc instruction.

A corresponding gasqc instruction writes back this information to memory in the same

format to facilitate context switches.

Like demand memory accesses, a memory queue can be programmed to transfer

up to four words on each request. Unlike a demand access, the four words can be matched

to buses arbitrarily, so that the first word is not necessarily transferred over bus 0, etc. The

last four bytes loaded into the queue controller assign a bus to each word (Figure A.46).

The configuration of a control block that allows it to initiate a queue access is a

variation of the one for demand memory accesses, as seen in Figure A.47. As before, an

access is initiated whenever A′ and B′ are both 1. The only additional information encoded

in the configuration is the queue number to access. The direction of transfer (read or write)

is determined by the queue itself and is not decided by the D input to the control block

as it is for demand accesses. The address bus is not used for queue accesses. The transfer

step of a queue access is identical to that for a demand access, keeping in mind that the

association between buses and words is not fixed but is set by the queue controller.

Ultimately, a queue access has the same affect as a demand memory access at the

address maintained within the queue controller (recall Figure A.46). After each access to a

memory queue, the stored address is incremented to the next contiguous byte following the

last one read or written. A gasqc instruction writes out a queue control record with this

updated address, so that galqc can properly restore the state that the queue had at the

time gasqc was executed.

Figures A.48 and A.49 show the timing of a queue write and a queue read, respec-

tively. The timing for a queue write is indistinguishable from that of a demand memory

write, while a queue read appears the same as a demand read with the delay fixed at 1 clock

cycle. Like a demand memory write, a queue write is not committed until one array clock
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32

0 0 0 0 0 0 0

25

E

24

0 0 0 0 0 0 0

17

D

16

0 0 0 0 0 0 0

9

A

8

0 0 0 0 0 0 0 0

0

32

0 0 0 0 0 0

26

size

24

0 0 0 0 0 0

18

K

16

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0

32

address

0

32

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0

32

0 0 0 0 0 0

26

bus0

24

0 0 0 0 0 0

18

bus1

16

0 0 0 0 0 0

10

bus2

8

0 0 0 0 0 0

2

bus3

0

E

0 queue disabled
1 queue enabled

D

0 read
1 write

A

0 no cache allocate
1 cache allocate

size

00 8 bits
01 16 bits
10 32 bits

K

00 1 word per access
01 2 words per access
10 4 words per access

busn
00 word n on bus 0
01 word n on bus 1
10 word n on bus 2
11 word n on bus 3

Figure A.46: Format of a queue control record.
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64

A in

58

A′

56

B in

50

B′

48 32

32

type

30

0 0 0 0 0 0 0 0 0 0 0 0

18

Q

16 3

1 1 0

0

A′ → enable
B′ → initiate queue access

[31..30] type

00 queue access

[17..16] Q

00 queue 0
01 queue 1
10 queue 2

Figure A.47: Memory interface configuration fields associated with the initiate step of a
memory queue access. (Compare with Figure A.42.)

Initiate write to memory queueT

clock
cycle:

Store registers over memory buses
(Data is in Z or D registers of rows)

AND 

(Control signals are in upstream registers)T−1

Figure A.48: Timing of a write to an ar-
ray memory queue. The write “occurs” in
the active cycle following the control sig-
nals being applied (see text).

Initiate read from memory queue
(Load signals are in upstream registers)

T

clock
cycle:

Load registers over memory buses
(Causes data to be latched into Z or D
   registers of rows)

(Initiate signal is in upstream register)T−1

T+1

Figure A.49: Timing of a read from an ar-
ray memory queue. This is equivalent to a
demand memory read with a fixed delay of
1 clock cycle.
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cycle following the initiation of the write by the control block. If the clock counter becomes

zero in the same cycle that the queue write is initiated and if array execution is never

resumed, the write will not occur.

Each of the three queues can be accessed on every array clock cycle, simultaneously

with the initiation of a new demand memory access every cycle. This makes it possible to

achieve four independent memory accesses per clock cycle to/from the array. However, each

memory bus can transfer only one word during any given cycle, so in total a maximum of

four 32-bit words can be accessed each cycle.
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Appendix B

Garp Application Notes

This appendix contains some notes for how to program common operations using

Garp’s features.

B.1 Single-bit operations

Because of the Garp array’s 2-bit granularity, values are passed between logic

blocks as 2-bit pairs and are mostly operated on by logic block functions as 2-bit values.

Simple true-or-false Boolean values are most conveniently encoded in the array as binary 00

or 11. Since the table mode logic block function operates on both bit positions identically,

arbitrary four-input Boolean functions can be programmed with the output emerging in the

same form as either 00 or 11. The crossbar permutation boxes permit inputs to be selected

from individual source bits by duplicating either the high or low bit of an input into both

bit positions before the input is passed to the lookup table.

B.2 Shifts

Unsigned shifts by a constant distance are easily accomplished using the horizontal

wires between two rows. The upper row drives the value to be shifted onto the wires, and

the lower row reads the shifted bits. Since values between blocks are transmitted as 2-bit

pairs, this always suffices for unsigned shifts a distance of an even number of bits. The

shifted value is immediately available for use as an operand within the lower row.

When a value must be shifted an odd number of bits over, the lower row is usually
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responsible for performing the final shift by one bit. The shift/invert permutation boxes

are partly designed for this job, but they are only accessible when the logic blocks in the

second row are in certain modes (the select modes and triple-add mode). For other modes

(the table modes and the carry chain mode), the crossbar boxes must be used to pick out

the correct bits, with the logic block functions encoded independently for the high and low

bit positions.

Signed left shifts are indistinguishable from unsigned left shifts. A signed right

shift, on the other hand, must replicate the original sign bit into some number of bit

positions. This cannot be done using the shift/invert permutation boxes unless there is a

source somewhere that has the sign bit duplicated in both the high and low bits (like the

Boolean values in the previous section). More often, signed right shifts depend on using the

crossbar boxes to get everything into the correct places.

In most cases, the same value can be shifted different distances for more than one

input to a row. For example, an addition operation can take the value a from the row above

shifted left by two bits for one input, and shifted left by four bits for the other input, to

compute the value 4a + 16a = 20a. This technique for multiplication is covered in a later

section.

Variable shifts are done in the Garp array as a series of multiplexors choosing

among constant shifts. A complete variable left shift of a 32-bit value would first optionally

shift by 16 bits in one row, then shift by either 0, 4, 8, or 12 bits in a second row, and finally

shift by either 0, 1, 2, or 3 bits in a third row. Each of the three stages corresponds to

up to two bits of the shift amount, and can be implemented in a single row using the logic

block select mode and the horizontal wires. (The select control input must be inverted by

the shift/invert box so that a value of binary 00 corresponds to accepting the value from

the row above without any shift.)

B.3 Using the carry chain

The Garp array’s carry chains can be used for any function that is expressible in

terms of the carry chains’ propagate and generate control signals. A simple example is a

test for whether two integers a and b are equal. As the carry chain progresses from right

to left, a 0 carry chain value can be defined to mean that the two integers are equal for

all the least-significant bits up to that position. If any pair of corresponding bits in a and
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a b kout = result propagate generate

0 0 kin 1 –
0 1 1 0 1
1 0 1 0 1
1 1 kin 1 –

Table B.1: Configuration of the carry chain for the comparison a 6= b. The value of result
is the same as kout.

a b kout = result propagate generate

0 0 kin 1 –
0 1 1 0 1
1 0 0 0 0
1 1 kin 1 –

Table B.2: Configuration of the carry chain for the comparison a < b.

b are not the same, the carry out from that position should be forced to 1 to indicate the

two values are unequal. However, if two corresponding bits of a and b are the same, the

carry out should duplicate the carry in, because whether the two integers are equal up to

that point depends entirely on whether they were equal up to the previous bit position. If

and only if all the corresponding bits in a and b are the same will the original 0 carry into

the least-significant bit position propagate through to the other side unchanged. Table B.1

shows how the propagate and generate tables are programmed to get the desired effect with

the logic blocks in carry chain mode. The final result is exactly the carry out from the

most-significant bit position, and will be 0 (or false) if a = b and 1 (or true) if a 6= b.

A small modification to the configuration, as illustrated in Table B.2, changes the

comparison from a 6= b to a < b. In this case, if two corresponding bits of a and b are not

the same, the carry out is forced to either a 1 (true) or 0 (false) depending on which of a

or b has the greater bit value. As before, if the two corresponding bits of a and b are the

same, then whether a < b up to that point depends on whether it was true for the bits to

the right of that position. The final result of the comparison is again exactly the carry out

from the most-significant bit position.

The propagate and generate settings for calculating an addition a + b are given in

Table B.3. The result output is not the same as kout but can be represented instead as

propagate ⊕ kin (which appears in the Garp documentation as the result function U ⊕K).

Subtraction is implemented as a variant of addition, making use of the rule that
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a b kout result propagate generate

0 0 0 kin 0 0
0 1 kin ¬kin 1 –
1 0 kin ¬kin 1 –
1 1 1 kin 0 1

Table B.3: Configuration of the carry chain for the addition a + b. The value of result is
propagate ⊕ kin.

the bitwise logical complement of an integer a is the same as −1− a. From this simple fact

we can derive that

a− b = −1− ((−1− a) + b) = ¬(¬a + b),

where the notation ¬a denotes the bitwise logical complement of a. Thus the subtraction

a−b can be accomplished by complementing the input a, adding b, and lastly complementing

the result. The complement of an input can be effected in the configuration of the propagate

and generate lookup tables, while the result is complemented simply by choosing the result

function ¬(U ⊕K) instead of U ⊕K.

B.4 Adding or subtracting three terms

The triple-add logic block mode supports the direct addition of three terms, a +

b+ c, by first reducing the three inputs to two with a carry-save adder and then feeding the

two results to the carry chain for summing. Up to two of the three terms can be negated

using tricks similar to that just shown for subtraction. The simplest case is the one with

two negated terms, because

a− b− c = −1− ((−1− a) + b + c) = ¬(¬a + b + c).

This is clearly the same scheme used to get a−b above. In triple-add mode, the complement

of input a is achieved by programming the shift/invert permutation box to complement

(invert) that input.

The case with just one term negated is more subtle, and requires the following

theorem:

Theorem: If m + n = a + b + ¬c then m− ¬n = a + b− c.

Proof: m−¬n = m−(−1−n) = m+n+1 = a+b+¬c+1 = a+b−1−c+1 = a+b−c.
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This theorem gives us a way to compute a+b−c: First feed a, b, and ¬c into the carry-save

adder, so that the resulting sum and carry terms have the same sum as a + b + ¬c. Then

instead of adding sum and carry as usual, program the rest of the logic block to calculate

sum − ¬carry (in exactly the same manner as done for a − b in the previous section) to

obtain the result a + b− c.

B.5 Multiplication

In practice, most multiplications are by constants, which is fortunate because

multiplying by a constant is usually more efficient than a general multiplication of two

variables. If the variable factor is small (only a few bits) and the constant factor large, the

problem can be turned into a lookup table, with the variable factor supplying the index

into the table. Otherwise, multiplying by a constant is best done as a tree of three-input

adders as discussed in Section 3.2.4. To calculate 100 × a, for example, it suffices to sum

27a − 25a + 22a = (128 − 32 + 4) × a = 100 × a. If the value a is being driven onto the

horizontal wires below some row, the row immediately below can perform all the necessary

shifts and adds by appropriate configurations of triple-add mode and selecting the proper

bits off the horizontal wires above. Multiplications by larger constants just require more

adders using more rows; all but the last row duplicates the variable factor onto horizontal

wires via the logic block “D paths,” so that each row can obtain the necessary shifted partial

products to add.

Figure B.1 breaks up all the odd integers up to 85 into the fewest power-of-2

terms that sum to that integer. For the even integers, observe that an odd integer c has the

same number of terms as every even integer of the form 2kc for any k. Thus, for instance,

100 = 22 × 25 = 22 × (25 − 23 + 20) = 27 − 25 + 22 as already noted.

The pattern visible in Figure B.1 makes it easy to determine the smallest multiplier

constant that requires more terms than can be accomodated by some number of array rows:

number of addends smallest multiplier
array rows that can be summed that does not fit

1 3 43
2 5 683
3 7 10923
4 9 174763

Stated the other way around, it is known that a multiplication by any constant less than
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1 = 20

3 = 22 − 20

5 = 22 + 20

7 = 23 − 20

9 = 23 + 20

11 = 24 − 22 − 20

13 = 24 − 22 + 20

15 = 24 − 20

17 = 24 + 20

19 = 24 + 22 − 20

21 = 24 + 22 + 20

23 = 25 − 23 − 20

25 = 25 − 23 + 20

27 = 25 − 22 − 20

29 = 25 − 22 + 20

31 = 25 − 20

33 = 25 + 20

35 = 25 + 22 − 20

37 = 25 + 22 + 20

39 = 25 + 23 − 20

41 = 25 + 23 + 20

43 = 26 − 24 − 22 − 20

45 = 26 − 24 − 22 + 20

47 = 26 − 24 − 20

49 = 26 − 24 + 20

51 = 26 − 24 + 22 − 20

53 = 26 − 24 + 22 + 20

55 = 26 − 23 − 20

57 = 26 − 23 + 20

59 = 26 − 22 − 20

61 = 26 − 22 + 20

63 = 26 − 20

65 = 26 + 20

67 = 26 + 22 − 20

69 = 26 + 22 + 20

71 = 26 + 23 − 20

73 = 26 + 23 + 20

75 = 26 + 24 − 22 − 20

77 = 26 + 24 − 22 + 20

79 = 26 + 24 − 20

81 = 26 + 24 + 20

83 = 26 + 24 + 22 − 20

85 = 26 + 24 + 22 + 20

etc.

Figure B.1: The fewest power-of-2 terms that sum to each odd integer up to 85. A pattern
can be constructed centered on the exact powers of 2 (observe above: 8, 16, 32, 64).

683, for example, can be done in no more than two array rows. Moreover, as Figure B.1

shows, even though it is not possible to multiply by 43 in three terms, there are still many

values larger than 43 that can be multiplied in just three terms. Multiplication by 1000,

for instance, requires only one row because 1000 = 23 × 125 = 23 × (27 − 22 + 20).

When neither factor is a constant, multiplication takes a little more work. Fig-

ure B.2 shows the physical organization in the Garp array of a multiplier taking two unsigned

16-bit variables and generating a 32-bit product. This example multiplies by four multi-

plier bits each clock cycle, taking four iterations (and thus four clock cycles) to complete

an entire 16-bit multiplication. An additional three cycles of latency pushes the total time

for one multiplication to seven clock cycles.

The multiplier shifter shifts the multiplier by four bits each cycle. Each of the two

partial product selectors determines the product of the multiplicand and two bits from the

multiplier, the result of which is either 0, the multiplicand, 2× the multiplicand (trivial), or
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3 × multiplicandpartial product selector

latch, route multiplicand

multiplier shiftersum of two partials above

accumulated sum of all partials

partial product selector

21 13 12 4
logic blocklogic block

Figure B.2: Layout in the Garp array of a multiplier taking two unsigned 16-bit variables
and calculating a 32-bit product.

3× the multiplicand. A separate set of logic blocks calculates 3× the multiplicand for use

by the partial product selectors. (This value does not change until the next pair of factors.)

A partial product selector is primarily a multiplexor of four inputs, configured using the

partial select mode provided for this purpose. The rest of the pieces merely add up the

partial products. Other variable multipliers can be constructed along the same principles.


