

John Hauser’s
Stacked Traps for RISC-V

Preface

● The design presented here is still a work-in-progress.
Improvements and fixes are possible with good
reasons.

● This presentation is an overview, leaving out some
details. More complete specifications can be
provided (and refined) if there is interest.

Main Targeted Features
● Vectored interrupts

– Handler address is read from table, indexed by interrupt number
● Automatic nested interrupts (preemption)

– Based on priority level, of course
● Option for using standard-ABI subroutines as handlers
● Option for faster interrupt handlers

– Using special calling convention instead of standard ABI

Assumptions about Memory
● Vector tables will be in “local memory”, fast to access

– Also known as “tightly coupled memory”, other names
– Harts are allowed and expected to enforce this, by constraining

table locations; details are mostly implementation-specific
● Interrupt stack expected also likely in local memory, for fast

register saves
● Inconvenient access faults (e.g. PMP violations) can be

treated as abnormal, raising a double-trap exception

Additional Observations
● Easiest if same trap entry/exit machinery used for both

interrupts and synchronous exceptions
– Also, baseline RISC-V exception entry/exit blocks interrupts; want

to minimize this blockage, same as for interrupt trap entry/exit
● Mechanism for taking traps can be decoupled from interrupt

identity hierarchy
– My plan is to combine stacked traps with AIA interrupt hierarchy
– Could instead do stacked traps with a flat interrupt hierarchy
– Different interrupt hierarchy implies different vector table structure

Baseline Trapping vs. Stacked Traps
● “Baseline trapping” is the original RISC-V trapping

mechanism
● The trapping mode (baseline or stacked traps) is selected

by low bits of mtvec register

Stacked Traps, Part 1: Fast Handlers

– The stack (sp) is swapped as
needed

– A small trap stack frame is
pushed on new stack (→)

– IPL is set to new priority level
– Handler’s entry address is read

from table in local memory

<... next slide>

control info (saved IPL, etc.)
saved t0 (x5)

saved a0 (x10)
saved a1 (x11)
saved a2 (x12)
saved a3 (x13)
saved a4 (x14)

address to resume (mepc)

top of stack

4 bytes (RV32) or 8 bytes (RV64)

sp:
Automatic on trap entry:

Stacked Traps, Part 1: Fast Handlers

– Registers a0-a3 are written with trap information:

– Last, execution jumps to handler’s entry address

<... continued>

synchronous
 exception

interrupt,
 not external

interrupt,
 external

a0 mcause mcause mcause
a1 mtval interrupt priority minor identity and

 interrupt priority
a2 mtval2 or 0 0 0
a3 mtinst or 0 0 0

Stacked Traps, Part 1: Fast Handlers

– Stack frame is popped, restoring registers (including IPL)
– The stack (sp) is swapped back, as needed
– Execution jumps to resume address (read from stack frame)

MRET is still used for trap exit:

Stacked Traps, Notes
● Any fault during automatic reading of vector table or

pushing/popping stack causes a double-trap exception
● Interrupts are not disabled by trap entry, and can stay

enabled up to trap exit (MRET).
– Immediately after trap entry, a preempting interrupt can be taken

● Some CSRs for baseline trapping are ignored (must be
ignored!) by software:

mepc, mcause, mtval, mtval2, mtinst

Implementation Optimizations
● Can have dedicated fast path for automatic read of vector

table in local memory
● Pushing stack frame and writing a0-a3 can overlap with

pipeline redirect on trap entry
● MRET can sometimes shortcut next trap entry when

another interrupt is pending
– Leave stack frame alone and just write new trap info into a0-a3,

before jumping to new handler entry address

Latency to Enter a Fast Handler
● IF each value pushed on stack takes 1 cycle,

And IF all other automatic actions on trap entry completely
overlap stack pushes,
→ Time to enter fast trap handler is 8 cycles

● With a short pipeline and wider stores to memory, possible
to conceive of faster implementations
(4 cycles?)

Main Targeted Features
● Vectored interrupts

– Handler address is read from table, indexed by interrupt number
● Automatic nested interrupts (preemption)

– Based on priority level, of course
● Option for using standard-ABI subroutines as handlers
● Option for faster interrupt handlers

– Using special calling convention instead of standard ABI

Stacked Traps, Part 2:
Standard-ABI Functions as Handlers

● Bit 0 of handler entry address (from vector table) selects
one of two paths:
– If bit 0 = 1: fast handler, using nonstandard calling convention, as

in earlier slides (only t0 and a0-a4 saved automatically on stack)
– If bit 0 = 0: standard-ABI handler

● If bit 0 = 0, differences on trap entry:
– Initial handler address is taken from mtvec, not from vector table

→ single common entry for all standard-ABI handlers
– Handler address from vector table is automatically written to t0

Stacked Traps, Part 2:
Standard-ABI Functions as Handlers

● Initial handler from mtvec is a “fast handler” that prepares
for and calls the standard-ABI handler

common initial handler entry:
 ... (optional) Push caller-saved F registers, others
 ... Push remaining caller-saved X registers (cm.pushtx?)
 li gp,___ or lw/ld gp,___
 jalr t0 @ Call standard-ABI handler from vector table
 mchaini @ Chain any pending interrupts
 ... Pop registers saved earlier (cm.poptx?, ...)
 mret

New Instruction: MCHAINI

● “Chain Interrupt”
● If no interrupt trap pending, does

nothing (no-op)
● Else, can JAL to new handler, reusing

same push/pop of all registers

 initial entry:
 ... Push registers
 ... Prepare gp
 jalr t0
» mchaini
 ... Pop registers
 mret

– Leaves ra pointing to MCHAINI, so on return from trap handler,
gets executed again

– (Special handling if new trap handler is a fast handler)

New Instruction: MCHAINI

● For simpler implementations, allow
MCHAINI = no-op?
– Loses ability to chain standard-ABI

interrupt handlers
– But no loss of functionality

 initial entry:
 ... Push registers
 ... Prepare gp
 jalr t0
» mchaini
 ... Pop registers
 mret

Implementation Optimization

● On trap entry for a standard-ABI
handler (bit 0 = 0), automaticaly push
handler address on return address
stack, so JALR target can be predicted
correctly here

 initial entry:
 ... Push registers
 ... Prepare gp
» jalr t0
 mchaini
 ... Pop registers
 mret

M-Level Option: Only Stacked Traps

CSRs for stacked traps:

CSRs eliminated:
mepc, mcause, mtval (mtval2, mtinst)

mtctl
mtvt
meitvt
mipreempt
mipl
miscratch ?

Trap Control
Trap Vector Table - synchr. exceptions and major interrupts
External Interrupts Trap Vector Table - AIA external interrupts
Interrupt Preemption configuration - “priority levels”
current Interrupt Preemption Level
alternate stack pointer for high-priority interrupts (optional?)

mtvec
mscratch

trapping mode + main trap vector
holds stack pointer for trap handlers

M-Level Option: Baseline + Stacked Traps
● Support both modes for greater software compatibility

CSRs used for all trapping modes:
mtvec, mscratch

Only for baseline trapping:
mepc, mcause, mtval (mtval2, mtinst)

Added CSRs (some usable with baseline trapping too):
mtctl, mtvt, meitvt, mipreempt, mipl, miscratch

Stacked Traps at S-Level
● Stacked trapping possible also at S-level, but ...

Does this make sense?
● Executing anything in M-mode totally blocks S-level

interrupts
How many clock cycles? N = 500? 5000?

● Cannot guarantee interrupt latency better than N
Is 500 + 8 cycles that much better than 500 + 20?

Further Topics
● ... Many details
● Vector tables structure
● Configuration of preemption cohorts (“priority levels”)
● Additional features:

– “Context interrupts”: High-priority interrupt handler can schedule
lower-priority task as another interrupt

– Priority deference from M-level to S-level: High-priority S-level
interrupt is taken before low-priority M-level interrupt

