
Proposed Instructions for the RISC-V Base P Extension

John Hauser

February 6, 2025

Warning! This document is only a draft proposal and is not an official document of the
RISC-V International Association. The Base P extension that is eventually ratified by
RISC-V International is liable to differ from this proposal in many details.

This document proposes a set of instructions for the RISC-V Base P extension, both for RV32 and for
RV64.

This version (014) differs from the previous one (012) by adopting a modified system for naming
instructions, causing these instruction names to change:

all *.B.B0 → *.BS all *.DB.B0 → *.DBS
all *.H.H0 → *.HS all *.DH.H0 → *.DHS
all *.W.W0 → *.WS all *.DW.W → *.DWS

PREDSUM.* → PREDSUM.*S
PREDSUMU.* → PREDSUMU.*S

PSEXTB.H → PSEXT.H.B PSEXTB.DH → PSEXT.DH.B
PSEXTB.W → PSEXT.W.B PSEXTB.DW → PSEXT.DW.B
PSEXTH.W → PSEXT.W.H PSEXTH.DW → PSEXT.DW.H

all *.H.BEE → *.H.B00 all *.H.BE → *.H.B0
all *.H.BEO → *.H.B01 all *.H.BO → *.H.B1
all *.H.BOO → *.H.B11
all *.W.HEE → *.W.H00 all *.W.HE → *.W.H0
all *.W.HEO → *.W.H01 all *.W.HO → *.W.H1
all *.W.HOO → *.W.H11

The instructions being proposed for the Base P extension are listed here by name, but this document
does not, for the most part, describe exactly what each instruction does. Rather:

� Instruction names are constructed based on instruction function, according to a set of rules given
by another document, System for RISC-V P Extension Instruction Names.

� The correspondences between the instructions here and those of the earlier draft P proposal are
detailed in Annex A of this document (a separate PDF).

� For new instructions without a corresponding instruction in the earlier draft P proposal, exact
functions are documented in a separate text file.

1



1 Commonalities

Some general principles apply to the selection of instructions for the Base P extension:

� The default width of operands is XLEN, 32 bits for RV32, or 64 bits for RV64. Where both
RV32 and RV64 have the same packed-SIMD instruction, the instruction operates on 32-bit-size
operands for RV32, but 64-bit-size operands for RV64, unless indicated specially otherwise.

� An instruction can have no more than three independent register operands: two source operands
and one destination. But unlike the base RISC-V ISA, instructions may both read and write
their destination operand, which is necessary for accumulate operations, for example.

� Instructions with register-pair operands exist only for RV32, not for RV64. RV32 needs register-
pair operands in order to operate conveniently on 64-bit fixed-point values, but RV64 already
supports 64-bit values inherently.

(Although some computations might benefit from specialized RV64 instructions with register-
pair operands, the extra costs of implementing register-pair operands in a physical processor are
judged not to be justified for only a few, limited uses. For applications that really need 128-bit
or wider packed-SIMD operands for performance, product developers are advised to look to the
RISC-V V extension.)

� An instruction with register-pair operands (RV32 only) can read from a maximum of one register
pair and two single registers, or equivalently, a maximum of two pairs. For example, if an
instruction reads from a register-pair destination operand, and both its source operands are also
registers, the source operands can be only single registers, not pairs.

(This rule limits the number of register ports and associated forwarding paths needed in a
hardware implementation, when instructions are not broken into multiple micro-ops.)

� There is no concern for overflow of 64-bit values. Hence, there are no instructions that sat-
urate doubleword results, and no instructions that perform averaging addition/subtraction of
doublewords.

� For all instructions that accumulate (adding a computed value to the previous value of the
destination operand), the accumulate addition does not saturate. If saturation is needed, a
separate instruction for saturating addition must be executed.

� No instructions exist that do subtract-accumulate (subtract a computed value from the previous
value of the destination operand). If needed, subtraction must be done by a separate instruction.

� For any instruction that includes an accumulate operation, an equivalent instruction without
accumulate is usually provided too.

� Among instructions that exist primarily to aid complex arithmetic, only halfword-size and word-
size elements are supported, not byte-size, because complex numbers with byte-size components
are not considered common enough to justify dedicated instructions. (Unsigned components are
also not supported, for obvious reasons.)

Most packed-SIMD instructions that do not multiply have a fairly regular structure, whereas those
that do multiply exhibit more variety. The instructions of the Base P extension that do not perform
any multiplications are listed in the next section, while instructions that do multiply are grouped
together separately in Section 3.

2



2 Instructions without multiplications

The non-multiplying instructions proposed for the Base P extension are presented in tables in two
subsections, the first for instructions that do not have register-pair operands (RV32 and RV64), and
then another for instructions with register-pair operands (RV32 only).

The following explains the more unusual or esoteric functions among the proposed instructions:

SH1ADD, SSH1SADD:

Function SSH1SADD (saturating shift left by 1, saturating addition) is a double-saturating
version of the Zba extension’s SH1ADD instruction. It serves as a building block to better support
full-width “Q-format” products (a full-width product shifted left by 1 bit) in combination with
saturating addition. While the operation of shifting left by 1 bit and saturating, “SSH1”, can be
done using SADD, having SSH1SADD available allows two instructions (SADD and SADD) to
be reduced to one.

SH1ADD is of course the same computation without any saturation. This can be useful as well
for full-width “Q-format” products in circumstances where saturation is not needed or desired.

Instructions for byte-width SH1ADD or SSH1SADD are not proposed because full-width prod-
ucts are always at least 16 bits wide.

PACK, PACKBT, PACKTB, PACKT:

See: https://lists.riscv.org/g/tech-p-ext/message/247

ZIP, UNZIP, WZIP:

See: https://lists.riscv.org/g/tech-p-ext/message/287

SLX, SRX:

Shift Left Extended and Shift Right Extended.

See: https://lists.riscv.org/g/tech-p-ext/message/267

https://lists.riscv.org/g/tech-p-ext/message/272

https://lists.riscv.org/g/tech-p-ext/message/277

MVM, MVMN, MERGE:

Move Masked, Move Masked Not, and Merge.

See: https://lists.riscv.org/g/tech-p-ext/message/267

https://lists.riscv.org/g/tech-p-ext/message/276

WADD, WADDA, WSUB, WSUBA:

For RV32, instructions for widening addition and subtraction, with and without accumulate, are
justified as follows: First, addition/subtraction in various forms are among the most common
operations of a computer. Second, other widening instructions for RV32, such as WMACC
(widening multiply and accumulate), also require the same structure, with single-register source
operands, and accumulation into a register-pair destination. And third, much like SH1ADD and
SSH1SADD, widening addition/subtraction is useful sometimes as a building block for functions
that may exist as single instructions in other architectures but not in the Base P extension for
RISC-V.

3



2.1 No operands are register pairs

B H W D
RV32/RV64 RV32/RV64 RV32 RV64 RV64 only

PLI.B (*1) PLI.H (*2) (ADDI) PLI.W (*2) (ADDI)
PLUI.H (LUI) PLUI.W (*3)

PADD.BS PADD.HS (ADD) PADD.WS (ADD)
PADD.B PADD.H (ADD) PADD.W (ADD)
PSUB.B PSUB.H (SUB) PSUB.W (SUB)
PSADD.B PSADD.H SADD PSADD.W (*4)
PSADDU.B PSADDU.H SADDU PSADDU.W
PSSUB.B PSSUB.H SSUB PSSUB.W
PSSUBU.B PSSUBU.H SSUBU PSSUBU.W
PAADD.B PAADD.H AADD PAADD.W
PAADDU.B PAADDU.H AADDU PAADDU.W
PASUB.B PASUB.H ASUB PASUB.W
PASUBU.B PASUBU.H ASUBU PASUBU.W
(*5) PSH1ADD.H (SH1ADD) PSH1ADD.W (SH1ADD)

PSSH1SADD.H SSH1SADD PSSH1SADD.W (*4)
(*6) PAS.HX not PAS.WX not

PSA.HX applicable PSA.WX applicable
PSAS.HX (*7) PSAS.WX (*8)
PSSA.HX PSSA.WX
PAAS.HX PAAS.WX
PASA.HX PASA.WX

PDIF.B PDIF.H (*9) (*9)
PDIFU.B PDIFU.H
PSABS.B PSABS.H (*10) (*4)
PREDSUM.BS PREDSUM.HS (ADD) PREDSUM.WS (ADD)
PREDSUMU.BS PREDSUMU.HS (ADD) PREDSUMU.WS (ADD)
PDIFSUMU.B (*11)
PDIFSUMAU.B

(*1) PLI.B (Packed-SIMD Load Immediate, Byte elements) can load any 8-bit immediate
into all destination bytes.

(*2) The immediates that can be loaded into halfword and word elements are 10 bits wide,
signed. PLI (Packed-SIMD Load Immediate) and PLUI (Packed-SIMD Load Upper
Immediate) differ in whether the immediate is loaded into the least-significant or
most-significant 10 bits of each destination element.

(*3) Use existing instructions for loading doubleword constants.

(*4) Saturation is not supported at doubleword size, nor averaging add/subtract.

(*5) Operations SH1ADD and SSH1SADD are not supported for bytes.

(*6) The instructions that add/subtract even/odd elements (PAS.HX, PSA.HX, etc.) exist
for complex arithmetic, which is not equally supported for byte-size components.

(*7) A single RV32 register can hold only one 32-bit word, so cannot contain two elements
to swap. The equivalent function is performed by two scalar instructions, such as
ADD and SUB.

(*8) A single RV64 register can hold only one 64-bit doubleword, so cannot contain two
elements to swap. The equivalent function is performed by two scalar instructions,
such as ADD and SUB.

4



(*9) Absolute difference can be computed in three operations: MAX, MIN, and SUB for
DIF; or MAXU, MINU, and SUB for DIFU. Absolute value can be computed either
with the scalar ABS instruction or in two operations: SUB to negate, then MINU of
the original and negated values.

(*10) Saturating absolute value SABS can be computed in two operations: SSUB to negate
with saturation, then MINU of the original and negated values.

(*11) Sum of absolute difference is not supported for sizes larger than bytes.

B H W D
RV32/RV64 RV32/RV64 RV32 RV64 RV64 only

PSEXT.H.B (SEXT.B) PSEXT.W.B (SEXT.B)
(SEXT.H) PSEXT.W.H (SEXT.H)

(*1) PSATI.H SATI PSATI.W SATI
PUSATI.H USATI PUSATI.W USATI

PSLLI.B PSLLI.H (SLLI) PSLLI.W (SLLI)
PSLL.BS PSLL.HS (SLL) PSLL.WS (SLL)
PSRLI.B PSRLI.H (SRLI) PSRLI.W (SRLI)
PSRL.BS PSRL.HS (SRL) PSRL.WS (SRL)
PSRAI.B PSRAI.H (SRAI) PSRAI.W (SRAI)
PSRA.BS PSRA.HS (SRA) PSRA.WS (SRA)
(*1) PSSLAI.H SSLAI PSSLAI.W (*2)

PSRARI.H SRARI PSRARI.W SRARI
PSSHA.HS SSHA PSSHA.WS SHA (*2)
PSSHAR.HS SSHAR PSSHAR.WS SHAR

PMIN.B PMIN.H (MIN) PMIN.W (MIN)
PMINU.B PMINU.H (MINU) PMINU.W (MINU)
PMAX.B PMAX.H (MAX) PMAX.W (MAX)
PMAXU.B PMAXU.H (MAXU) PMAXU.W (MAXU)
PMSEQ.B PMSEQ.H MSEQ PMSEQ.W (*3)
PMSLT.B PMSLT.H MSLT PMSLT.W
PMSLTU.B PMSLTU.H MSLTU PMSLTU.W

(*1) These operations are not supported for bytes: arbitrary-width saturation (SAT,
USAT) and advanced arithmetic shifts (SSLA, SRAR, SSHA, and SSHAR).

(*2) Saturation is not supported at doubleword size.

(*3) Condition masks are not supported at doubleword size. Use existing instructions for
conditional execution, or negate the result of a standard SLT or SLTU to form a 64-bit
mask.

5



B:B→H H:H→W W:W→D
RV32/RV64 RV32 RV64 RV64 only

PPACK.H (PACK) PPACK.W (PACK)
PPACKBT.H PACKBT PPACKBT.W PACKBT
PPACKTB.H PACKTB PPACKTB.W PACKTB
PPACKT.H PACKT PPACKT.W PACKT

B H W
RV32 RV64 RV32 RV64 RV64 only

(REV8) (*1) REV16 (*1)
(*2) ZIP8P (PACK) (*2) ZIP16P (PACK)

ZIP8HP PACKT ZIP16HP PACKT
(*3) UNZIP8P (PACK) UNZIP16P (PACK)

UNZIP8HP PACKT UNZIP16HP PACKT

(*1) The upper and lower halves of a register can be swapped using PACKTB.

(*2) For RV32, the equivalent of both ZIP8P and ZIP8HP can be done together by a single
WZIP8P instruction, and the equivalent of both ZIP16P and ZIP16HP can be done
together by a single WZIP16P instruction.

(*3) For RV32, the functions of UNZIP8P and UNZIP8HP can be achieved by instruction
PNSRLI.B (narrowing shift-right), with a shift distance of 0 for UNZIP8P or 8 for
UNZIP8HP.

scalar only
RV32/RV64 RV64

ABS SLX MVM ABSW
(CLZ) SRX MVMN (CLZW)
CLS MERGE CLSW
REV

6



2.2 One or more operands are even-odd register pairs (RV32 only)

RV32 only, register-pair destination
B→H H→W W→D

PWADD.B PWADD.H WADD
PWADDA.B PWADDA.H WADDA
PWADDU.B PWADDU.H WADDU
PWADDAU.B PWADDAU.H WADDAU
PWSUB.B PWSUB.H WSUB
PWSUBA.B PWSUBA.H WSUBA
PWSUBU.B PWSUBU.H WSUBU
PWSUBAU.B PWSUBAU.H WSUBAU
PWSLLI.B PWSLLI.H WSLLI
PWSLL.BS PWSLL.HS WSLL
PWSLAI.B PWSLAI.H WSLAI
PWSLA.BS PWSLA.HS WSLA

RV32 only, register-pair destination
B H W

WZIP8P WZIP16P (*1)

(*1) For RV32, the equivalent function for words is accomplished by two MV instructions.

7



RV32 only, register-pair operands
B H W D

PLI.DB PLI.DH (*1) (*2)
PLUI.DH

PADD.DB PADD.DH PADD.DW ADDD
PSUB.DB PSUB.DH PSUB.DW SUBD
PSADD.DB PSADD.DH PSADD.DW
PSADDU.DB PSADDU.DH PSADDU.DW
PSSUB.DB PSSUB.DH PSSUB.DW
PSSUBU.DB PSSUBU.DH PSSUBU.DW
PAADD.DB PAADD.DH PAADD.DW
PAADDU.DB PAADDU.DH PAADDU.DW
PASUB.DB PASUB.DH PASUB.DW
PASUBU.DB PASUBU.DH PASUBU.DW
(*3) PSH1ADD.DH PSH1ADD.DW

PSSH1SADD.DH PSSH1SADD.DW
(*4) PAS.DHX (*5) not applicable

PSA.DHX (*6)
PSAS.DHX
PSSA.DHX
PAAS.DHX
PASA.DHX

PDIF.DB PDIF.DH (*7) (*2)
PDIFU.DB PDIFU.DH
PSABS.DB PSABS.DH (*8)

(*1) PLI.DW and PLUI.DWwould be inconvenient to support because RV32 has no exactly
corresponding scalar instruction for words.

(*2) Few doubleword scalar instructions are provided for RV32. In particular, saturation
is not supported at doubleword size, nor averaging add/subtract.

(*3) Operations SH1ADD and SSH1SADD are not supported for bytes.

(*4) The instructions that add/subtract even/odd elements exist for complex arithmetic,
which is not equally supported for byte-size components.

(*5) For RV32, swapping words (.DWX) is not supported. The equivalent function is
performed by two scalar instructions, such as ADD and SUB.

(*6) An RV32 register pair can hold only one 64-bit doubleword, so cannot contain two
elements to swap.

(*7) Absolute difference can be computed in three operations: MAX, MIN, and SUB for
DIF; or MAXU, MINU, and SUB for DIFU. Absolute values of two words can be done
with two ABS instructions.

(*8) Saturating absolute value SABS can be computed in two operations: SSUB to negate
with saturation, then MINU of the original and negated values.

RV32 only, register-pair first source (only)
B H W

PREDSUM.DBS PREDSUM.DHS (*1)
PREDSUMU.DBS PREDSUMU.DHS

(*1) The equivalent function is accomplished by two ADD instructions, or a single WADDA
or WADDAU.

8



RV32 only, register-pair operands
B H W D

PSEXT.DH.B PSEXT.DW.B (*1)
PSEXT.DW.H

(*2) PSATI.DH PSATI.DW
PUSATI.DH PUSATI.DW

PSLLI.DB PSLLI.DH PSLLI.DW
PSRLI.DB PSRLI.DH PSRLI.DW
PSRAI.DB PSRAI.DH PSRAI.DW
(*2) PSSLAI.DH PSSLAI.DW

PSRARI.DH PSRARI.DW
PMIN.DB PMIN.DH PMIN.DW
PMINU.DB PMINU.DH PMINU.DW
PMAX.DB PMAX.DH PMAX.DW
PMAXU.DB PMAXU.DH PMAXU.DW
PMSEQ.DB PMSEQ.DH PMSEQ.DW
PMSLT.DB PMSLT.DH PMSLT.DW
PMSLTU.DB PMSLTU.DH PMSLTU.DW

(*1) Few doubleword scalar instructions are provided for RV32. Doubleword shifts by
a constant distance can be done in two instructions, making use of narrowing shift
instructions NSRLI and NSRAI.

(*2) These operations are not supported for bytes: arbitrary-width saturation (SAT,
USAT) and advanced arithmetic shifts (SSLA, SRAR).

RV32 only, register-pair first source and destination
B H W D

PADD.DBS PADD.DHS PADD.DWS (*1)
PSLL.DBS PSLL.DHS PSLL.DWS
PSRL.DBS PSRL.DHS PSRL.DWS
PSRA.DBS PSRA.DHS PSRA.DWS
(*2) PSSHA.DHS PSSHA.DWS

PSSHAR.DHS PSSHAR.DWS

(*1) Few doubleword scalar instructions are provided for RV32.

(*2) Advanced arithmetic shifts are not supported for bytes.

RV32 only, register-pair operands
B:B→H H:H→W W:W→D

PPACK.DH PPACK.DW (*1)
PPACKBT.DH PPACKBT.DW
PPACKTB.DH PPACKTB.DW
PPACKT.DH PPACKT.DW

(*1) Few doubleword scalar instructions are provided for RV32. Packing two words into a
doubleword is accomplished by two MV instructions.

9



RV32 only, register-pair first source (only)
H→B W→H D→W

PNSRLI.B PNSRLI.H NSRLI
PNSRL.BS PNSRL.HS NSRL
PNSRAI.B PNSRAI.H NSRAI
PNSRA.BS PNSRA.HS NSRA
PNSRARI.B PNSRARI.H NSRARI
PNSRAR.BS PNSRAR.HS NSRAR
PNCLIPI.B PNCLIPI.H NCLIPI
PNCLIP.BS PNCLIP.HS NCLIP
PNCLIPRI.B PNCLIPRI.H NCLIPRI
PNCLIPR.BS PNCLIPR.HS NCLIPR
PNCLIPIU.B PNCLIPIU.H NCLIPIU
PNCLIPU.BS PNCLIPU.HS NCLIPU
PNCLIPRIU.B PNCLIPRIU.H NCLIPRIU
PNCLIPRU.BS PNCLIPRU.HS NCLIPRU

10



3 Instructions that perform multiplications

Besides the more general principles listed earlier, some additional ones apply specifically to the selection
of multiplication instructions for the Base P extension:

� For byte × byte multiplication, only full-width products (B × B → H) are supported directly by
instructions, not byte-width products (B × B → B), because the latter do not maintain enough
precision for most computations. Algorithms that actually need byte-size products must convert
back from full-width, halfword-size products.

� For byte × byte multiplication, multiply-add instructions are provided only in forms that do
four-element-wide horizontal addition (4ADD), as these are believed to be sufficient for most
needs. For any other cases, byte multiplication and subsequent addition can always be done
using separate instructions.

� Instructions that multiply doublewords are not provided by the P extension.

� RV32 instructions with register-pair operands may not take more than 32 bits of factors to
multiply from each of two source operands—i.e., 32 bits from the first source operand, and
32 bits from the second source operand. This limits the number of bits that may be multiplier
inputs. (When more multiplier capability is needed for performance, developers are expected to
step up to RV64P systems, or switch to the V extension.)

As before, the first subsection below presents the instructions that do not have register-pair operands,
followed by a separate subsection for RV32-only instructions with register-pair destinations.

For instructions listed with suffix ‘.Bn’ or ‘.Bnn’, each n is the number of the byte sub-element to
take from each halfword of the respective source operand, either ‘0’ for bits 7:0 or ‘1’ for bits 15:8 of
each halfword. Likewise, for instructions listed with suffix ‘.Hn’ or ‘.Hnn’, each n is the number of
the halfword sub-element to take from each word of the respective source operand, either ‘0’ for bits
15:0 or ‘1’ for bits 31:16 of each word. And for instructions listed with suffix ‘.Wnn’, each n is the
number of the word sub-element to take from the respective doubleword source operand, either ‘0’ for
bits 31:0 or ‘1’ for bits 63:32. If there is only one digit, it applies to the second source operand. Where
there are two digits, the only combinations allowed are ‘00’, ‘01’, and ‘11’. For signed-unsigned (SU)
multiplications, ‘01’ is not supported, so the only combinations allowed are ‘00’ and ‘11’.

11



3.1 No operands are register pairs

B×B→B H×H→H W×W→W
RV32/RV64 RV32/RV64 RV32 RV64

(*1) PMULH.H (MULH) PMULH.W
PMULHR.H MULHR PMULHR.W
PMULHSU.H (MULHSU) PMULHSU.W
PMULHRSU.H MULHRSU PMULHRSU.W
PMULHU.H (MULHU) PMULHU.W
PMULHRU.H MULHRU PMULHRU.W
PMULQ.H MULQ PMULQ.W
PMULQR.H MULQR PMULQR.W
PMHACC.H MHACC PMHACC.W
PMHRACC.H MHRACC PMHRACC.W
PMHACCSU.H MHACCSU PMHACCSU.W
PMHRACCSU.H MHRACCSU PMHRACCSU.W
PMHACCU.H MHACCU PMHACCU.W
PMHRACCU.H MHRACCU PMHRACCU.W

(*1) For byte × byte multiplication, instructions are provided only for full-width products
(B×B→H), not byte-width products (B×B→B).

B×B→B→H H×H→H→W W×W→W→D
RV32/RV64 RV32 RV64 RV64 only

(*1) MQACC.Hnn PMQACC.W.Hnn MQACC.Wnn
MQRACC.Hnn PMQRACC.W.Hnn MQRACC.Wnn
PMQ2ADD.H PMQ2ADD.W
PMQ2ADDA.H PMQ2ADDA.W
PMQR2ADD.H PMQR2ADD.W
PMQR2ADDA.H PMQR2ADDA.W

(*1) For byte × byte multiplication, instructions are provided only for full-width products
(B×B→H), not byte-width products (B×B→B).

12



B×B→H H×H→W W×W→D
RV32/RV64 RV32 RV64 RV64 only

PMUL.H.Bnn MUL.Hnn PMUL.W.Hnn MUL.Wnn
PMULSU.H.Bnn MULSU.Hnn PMULSU.W.Hnn MULSU.Wnn
PMULU.H.Bnn MULU.Hnn PMULU.W.Hnn MULU.Wnn
(*1) MACC.Hnn PMACC.W.Hnn MACC.Wnn

MACCSU.Hnn PMACCSU.W.Hnn MACCSU.Wnn
MACCU.Hnn PMACCU.W.Hnn MACCU.Wnn
PM2ADD.H PM2ADD.W
PM2ADDA.H PM2ADDA.W
PM2ADDSU.H PM2ADDSU.W
PM2ADDASU.H PM2ADDASU.W
PM2ADDU.H PM2ADDU.W
PM2ADDAU.H PM2ADDAU.W
PM2ADD.HX PM2ADD.WX
PM2ADDA.HX PM2ADDA.WX
PM2SADD.H (*2) (*3)
PM2SADD.HX
PM2SUB.H PM2SUB.W
PM2SUBA.H PM2SUBA.W
PM2SUB.HX PM2SUB.WX
PM2SUBA.HX PM2SUBA.WX

(*1) For byte × byte multiplication, the only multiply-add instructions provided are those
with four-element-wide horizontal addition (4ADD).

(*2) Saturation of the horizontal addition (2SADD) will occur only when all four source
halfwords equal −0x8000. Versions of these instructions that accumulate are not
provided because saturation is not supported for an accumulate operation. To get the
effect of multiply-accumulate, a PM2SADD.H or PM2SADD.HX will most likely be
combined with SADD or PSADD.DW (RV32) or PSADD.W (RV64).

(*3) Saturation is not supported at doubleword size.

B×B→H→W H×H→W→D
RV32/RV64 RV64 only

PM4ADD.B PM4ADD.H
PM4ADDA.B PM4ADDA.H
PM4ADDSU.B PM4ADDSU.H
PM4ADDASU.B PM4ADDASU.H
PM4ADDU.B PM4ADDU.H
PM4ADDAU.B PM4ADDAU.H

H×B→H W×H→W
RV32/RV64 RV32 RV64

PMULH.H.Bn MULH.Hn PMULH.W.Hn
PMULHSU.H.Bn MULHSU.Hn PMULHSU.W.Hn
PMHACC.H.Bn MHACC.Hn PMHACC.W.Hn
PMHACCSU.H.Bn MHACCSU.Hn PMHACCSU.W.Hn

13



3.2 Destination is an even-odd register pair (RV32 only)

RV32 only, register-pair destination
B×B→B→H H×H→H→W W×W→W→D

(*1) PMQWACC.H MQWACC
PMQRWACC.H MQRWACC

(*1) For byte × byte multiplication, instructions are provided only for full-width products
(B×B→H), not byte-width products (B×B→B).

RV32 only, register-pair destination
B×B→H H×H→W W×W→D

PWMUL.B PWMUL.H WMUL
PWMULSU.B PWMULSU.H WMULSU
PWMULU.B PWMULU.H WMULU
(*1) PWMACC.H WMACC

PWMACCSU.H WMACCSU
PWMACCU.H WMACCU

(*1) For byte × byte multiplication, the only multiply-add instructions provided are those
with four-element-wide horizontal addition (4ADD).

RV32 only, register-pair destination
B×B→H→W H×H→W→D

(*1) PM2WADD.H
PM2WADDA.H
PM2WADDSU.H
PM2WADDASU.H
PM2WADDU.H
PM2WADDAU.H
PM2WADD.HX
PM2WADDA.HX
PM2WSUB.H
PM2WSUBA.H
PM2WSUB.HX
PM2WSUBA.HX

(*1) For byte × byte multiplication, the only multiply-add instructions provided are those
with four-element-wide horizontal addition (4ADD).

14


	Commonalities
	Instructions without multiplications
	No operands are register pairs
	One or more operands are even-odd register pairs (RV32 only)

	Instructions that perform multiplications
	No operands are register pairs
	Destination is an even-odd register pair (RV32 only)


